

December 02-04, 2013 Hampton Inn Tropicana, Las Vegas, NV, USA

The effects of seed layer thickness on the properties of ZnO nanorod photoelectrode for dyesensitized solar cells

Kyung Hwan Kim, Yu Sup Jung and Hyung Wook Choi Gachon University, Korea

The ZnO nanorod photoelectrodes for dye-sensitized solar cells (DSSC) were grown on ZnO seed layer/FTO using hydrothermal method. The ZnO seed layers with various thicknesses were fabricated by magnetron sputtering method. The ZnO nanorods were synthesized in a solution of zinc nitrate hexahydrate and hexamethylenetetramine at 90° C for 24 h. As the seed layer thickness was increased from 200 nm to 600 nm, the average diameter of the ZnO nanorod increased from 100 ± 10 nm to 250 ± 10 nm. The diameter of a ZnO nanorod strongly depends on the grain size of the seed layer, which acts as a base for the ZnO nanorod. As the results, the maximum values of energy conversion efficiency of ZnO nanorod photoelectrode DSSC indicated 0.91% with seed layer thickness of 600 nm.

khkim@gachon.ac.kr