

December 02-04, 2013 Hampton Inn Tropicana, Las Vegas, NV, USA

Hardness of the Fe81Ga19/Si(100) film measured by the nanoindentation method

Shien-Uang Jen Academia Sinica, Taiwan

 $\mathbf{F}_{e_{81}}\mathbf{Ga}_{19} \text{ alloy is an auxetic material, which means that its Poisson's ratio along the [110] direction, <math>V_{(110)}$ is negative. When this alloy is deposited on a single-crystal Si(100) wafer, the film is highly (110) textured. Thus, if we indent the film plane with a Berkovich indenter vertically, the apparent hardness obtained with the parameter $V_{eff} = V_{(110)} = -0.55 < 0$ should be larger than that with $V_{eff} = V_{(110)} = +0.30$. This is reasonable, because if V_{eff} is negative, the deformed material under the pressing indenter tends to push the tip slightly upward (or backward). As a result, the measured depth of circle of contact, hp, of this auxetic film is smaller than it should be under a fixed force, F, and, moreover, since the hardness H = F/[24.5(hp)2], the apparent (measured) hardness must be larger. We have made a series of $(Fe100-xCox)_{s1}Ga_{19}/Si(100)$ films, and measured their hardness. The results indicate that: [1] when $0 \le x < 7$ at %Co, the films (or alloys) are auxetic ($V_{eff} < 0$); [2] when $7 \le x \le 11$ at %Co, they are critical ($V_{eff} = 0$); and [3] when $11 < x \le 23$ at %Co, they are normal ($V_{eff} > 0$). Each point on the loading or un-loading curve was analyzed by the finite element analysis to show the side-view of the shear-stress (τ) distributions in the film, film/substrate, and substrate regions, respectively. We can study (or outline) the plastic-flow zone beneath the indenter by adopting the Tresca criterion: $\tau \ge H/6$.

Biography

Shien-Uang Jen has completed his Ph.D. at the age of 29 from the Physics Department of Carnegie-Mellon University. He is now a senior research fellow of the Institute of Physics, Academia Sinica. He has published more than 123 papers in reputed journals.

physjen@gate.sinica.edu.tw