Detection of H$_2$O$_2$ based on multi-porous SnO$_2$ nanofiber carbon nanotube nanocomposite with facilitated electron transfer of redox protein

A K M Kafi
Universiti Malaysia Pahang, Malaysia

A novel H$_2$O$_2$ biosensor is fabricated using multi-porous SnO$_2$ nanofiber/carbon nanotubes (CNTs) composite as a matrix for the immobilization of redox protein onto glassy carbon electrode. The Multi-Porous Nanofiber (MPNFs) of SnO$_2$ is synthesized by electro-spinning technique from the tin precursor. This nanofiber shows high surface area and good electrical conductivity. The SnO$_2$ nanofiber/CNT composite increases the efficiency of biomolecule loading due to its high surface area. The morphology of the nanofiber has been evaluated by Scanning Electron Microscopy (SEM). A direct electron transfer between the protein's redox center and the glassy carbon electrode is established after fabrication of the electrode. The fabricated electrode shows excellent electro-catalytic reduction to H$_2$O$_2$. The catalysis currents increases linearly to the H$_2$O$_2$ concentration in a wide range of 1.0×10$^{-6}$-1.4×10$^{-4}$ M and the lowest detection limit was 30 nM (S/N=3).

kafiakm@ump.edu.my