The role of S-layer proteins as one of the most abundant biopolymers on Earth in probiotic properties of bacterial strain *Lactobacillus brevis* SF9B

Katarina Zorić1, Blaženka Kos1, Martina Banić1, Ksenija Uroić1, Andreja Leboš Pavunc1, Jasna Novak1, Ksenija Durgo2, Hrvoje Petković2, Polona Jamnik3, Saša Kazazić4, Snježana Kazazić4, Slobodanka Radović5, Simone Scalabrin5, Ulla Hynönen6 and Jagoda Šušković1

1University of Zagreb, Croatia
2University of Ljubljana, Slovenia
3The Rudjer Bošković Institute, Croatia
4IGA Technology Services srl, Italy
5University of Helsinki, Finland

Surface (S)-layer proteins (Slps) form crystalline arrays of protein subunits as the outermost component of the cell wall in only few strains of *Lactobacillus* genera. In the genome of *Lactobacillus brevis* SF9B strain, three regions showed high homology with following slp sequences of the reference strain *L. brevis* ATCC 14869: with SlpB and SlpC in contig 2 (percentage of identities 65% and 89%, respectively) and with SlpD in contig 32 (percentage of identities 99%). Using SDS-PAGE of GHCl-extracted surface proteins of SF9B, a 50 kDa protein band, indicating the expression of the presumed Slp, was detected. 2D-PAGE of the same protein sample revealed a spot with isoelectric point and molecular weight of approximately 10, and 50 kDa, respectively. Structure and function prediction of the isolated Slp was generated using I-TASSER server, based on the data available for *L. brevis* ATCC 14869. Since Slps are exposed at the cell surface of certain *Lactobacillus* strains, they represent an interface between the bacterium and its biotic and abiotic microenvironments. Considering the fact that these environments include stress conditions which can affect bacterial viability and activity in the intestinal tract, Slps must have great importance in probiotic properties of the bacterial cells which express them. Although Slps of *Lactobacillus* strains are of great research interest for number of years, their physiological function remained poorly understood. However, Slps of strain SF9B mediate bacterial adherence to mucin, Caco-2 cells and extracellular matrix proteins, increase survival of *L. brevis* SF9B cells in simulated gastrointestinal conditions and during freeze-drying, and enhance their aggregation and coaggregation ability, which are important probiotic properties. The above mentioned results indicate that Slps contribute to technological and probiotic properties of strain *L. brevis* SF9B and that they have great role in potential application of that strain as novel probiotic culture.

Recent Publications:


Biography

Katarina Zorić is a PhD student employed as assistant on the scientific project "Probiotics and starter cultures - surface proteins and bacteriocins" founded by Croatian Science Foundation (IP-2014-09-7009, Project manager: Prof. Blaženka Kos, PhD) in Laboratory of Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb since 2016. So far her work was focused on three main topics: S-layer proteins, bacteriocins and exopolysaccharides of different lactic acid bacteria strains.

kzoric@pbf.hr