November 12-14, 2012 Hilton San Antonio Airport, USA

Role of neural stem cell activity in postweaning development of the sexually dimorphic nucleus of the preoptic area in rats

National Center for Toxicological Research/FDA, USA

The sexually dimorphic nucleus of the preoptic area (SDN-POA) has received increased attention due to its apparent sensitivity 👃 to estrogen-like compounds found in food and food containers. The mechanisms that regulate SDN-POA volume remain unclear as is the extent of postweaning development of the SDN-POA. Here we demonstrate that the female Sprague-Dawley SDN-POA volume increased from weaning to adulthood, although this increase was not statistically significant as it was in males. The number of Ki67-positive cells in the SDN-POA and the hypothalamus was higher at weaning than adulthood. A subset of those Ki67-positive cells in the SDN-POA territory displayed cell dividing morphology. Nestin-immunoreactivity delineated a potential neural stem cell niche in the rostral end of the 3rd ventricle. In conclusion, stem cells may partially account for the sexually dimorphic postweaning development of the SDN-POA

zhen.he@fda.hhs.gov