

Assessing of the role super oxide, nitric oxide and redox metals in apoptotic death of the mammalian cells in culture

N.Ja.Giliano, Stepanov S.I., Noskin L.A. and Konevega L.V
NRC Kurchatov Institute, Russia

The endogen-produced radicals such as NO and O₂ play the crucial part in the regulation both physiology and pathophysiology processes. The relationship between these radicals is determinant in the cytotoxic mechanism of the oxidative stress. The aim of this study was to investigate the interactions between these radicals and cytotoxicity using flow cytometry analysis and fluorescence indicators NO (DAF 2 DA), O₂ (dihydroethidine), donors NO (GSNO), redox agents (ascorbic acid AA), H₂O₂ and chelators redox metals (o-phenanthroline). This work was carried out on the three lines cells endotheliocytes ECV-304 (eNOS) and carcinoma cells HeLa-G63 (iNOS) and PC 12 (cells of neuroendocrine tumor of rats). Previously, we found that in cultured human endotheliocytes ECV 304 the intracellular levels superoxide O₂ and nitric oxide NO were lower than in carcinoma cells HeLa G-63. Comparative analysis of changes in the intracellular levels of superoxide and NO induced by ascorbic acid revealed a negative correlation between NO and O₂ levels, whose strength depended on concentration of the acid. Exposure of the cells to 0.5 and 1 mM AA did not induce the apoptotic death in both cell lines. In contrast, the cell fate dramatically changed at greater AA concentrations starting from 20 mM. We showed the potency of AA at high concentrations to induce apoptotic death in tumor cells. The differences in cytotoxicity of AA in high concentrations towards the human carcinoma cells and endotheliocytes were revealed. On the PC12 cells was estimating of the governing mechanisms of the cytotoxicity of the oxidative stress and the role of the amyloids in increasing this stress. Using flow cytometric assessment of the cytotoxicity H₂O₂ and fragment β -amyloid (A β) peptide (25-35) has been shown the dose-dependent increasing of the quota of the cells with DNA content <2c. Isoeffective concentrations were 1 mM H₂O₂ and 5 μ M A β . The cytotoxicity H₂O₂ and A β were accompanying with the increasing of the intracellular level of O₂. The treatment of the cells GSNO (donor of NO) and o-phenanthroline (chelators of Fe ions) significantly decreased the intracellular level of O₂ as well as the cytotoxicity H₂O₂ and A β . Thus, in direct experiments has been shown the part of amyloids in the increasing of the oxidative stress and participation of the reactive oxide radicals in the cytotoxic effect of the A β . The addition argument which confirmed contribution of the oxidative stress in the cytotoxic effect of the A β were the similarity of the cellular response on the action of the oxidative agent - H²O² and A β

giliano@omrb.pnpi.spb.ru