conferenceseries.com

6th International Conference and Expo on Immunology

October 24-26, 2016 Chicago, USA

SIRT3 regulates bone remodeling in mice by regulating AMPK activity

Jeong-Eun Huh^{1, 2} and Soo Young Lee^{1, 2} Ewha Womans University, South Korea

The mitochondrial sirtuin 3 (SIRT3) is involved in suppressing the onset of multiple pathologies, including cardiovascular disease, fatty liver, breast cancer and age-related disorders. However, its role in bone metabolism is not known. Here we show the involvement of SIRT3 in osteoclast differentiation. Receptor activator of nuclear factor- κ B ligand (RANKL), an essential cytokine for osteoclastogenesis, induces the expression of both the transcription co-activator peroxisome proliferator-activated receptor- γ co-activator-1 β (PGC1 β) and the nuclear receptor estrogen receptor-related receptor α (ERR α), which coordinately up-regulated SIRT3 during osteoclast differentiation from bone marrow-derived monocytes/macrophages (BMMs). SIRT3-deficient mice exhibit decreased bone mass compared with wild-type mice due to increased numbers of osteoclasts. Consistently, *Sirt3*^{-/-} osteoclast precursor cells underwent increased osteoclastogenesis in response to RANKL, whereas SIRT3 overexpression in osteoclast precursor cells exhibited reduced the formation of osteoclasts. Strikingly, *Sirt3*^{-/-} osteoclast precursor cells reduced the formation of osteoclasts. Strikingly, *Sirt3*^{-/-} osteoclast precursor cells reduced the formation of osteoclasts. Strikingly, *Sirt3*^{-/-} osteoclast precursor cells reduced the formation of osteoclasts. Strikingly, *Sirt3*^{-/-} osteoclast precursor cells reduced the formation of osteoclasts. Strikingly, *Sirt3*^{-/-} osteoclast precursor cells reduced the formation of osteoclasts. Strikingly, *Sirt3*^{-/-} osteoclast precursor cells reduced the formation of osteoclasts. Strikingly, *Sirt3*^{-/-} osteoclast precursor cells reduced the formation of osteoclasts. Strikingly, *Sirt3*^{-/-} osteoclast precursor cells reduced the formation of osteoclasts. Strikingly, *Sirt3*^{-/-} osteoclast precursor cells reduced the formation of osteoclasts. Strikingly, *Sirt3*^{-/-} osteoclast precursor cells reduced the formation of osteoclasts. Strikingly, *Sirt3*^{-/-} osteoclast precursor cells redu

Biography

Jeong-Eun Huh working in the Research Center for Cellular Homeostasis in Ewha Womans University. A major in molecular and cellular bone biology, she has published 3 peer-reviewed paper. Her primary research interests are in the field of osteoimmunology, especially the mechanisms of osteoclastogenesis. She received a research fellowship grant from the National Research Foundation of Korea (NRF). Her long term goal is to target signaling pathways as a novel approach to therapy

leemiruk@naver.com

Notes: