conferenceseries.com

6th International Conference and Expo on

Immunology

October 24-26, 2016 Chicago, USA

Vitamin E metabolite 13'-carboxychromanols inhibit pro-inflammatory enzymes, induce apoptosis and autophagy in human cancer cells by modulating sphingolipids and suppress colon tumor development in mice

Qing JiangPurdue University, USA

Witamin Eforms are substantially metabolized to various carboxychromanols including 13'-carboxychromanols (13'-COOHs) that are found at high levels in feces. However, there is limited knowledge about functions of these metabolites. Here we studied δ T-13'-COOH and δ TE-13'-COOH, which are metabolites of δ -tocopherol and δ -tocotrienol, respectively. Both 13'-COOHs are much stronger than tocopherols in inhibition of pro-inflammatory and cancer promoting cyclooxygenase-2 (COX-2) and 5-lipoxygnease (5-LOX) and in induction of apoptosis and autophagy in colon cancer cells. The anti-cancer effects by 13'-COOHs appeared to be partially independent of inhibition of COX-2/5-LOX. Using liquid chromatography tandem mass spectrometry, we found that 13'-COOHs increased intracellular dihydrosphingosin and dihydroceramides after short-time incubation in HCT-116 cells and enhanced ceramides while decreased sphingomyelins during prolonged treatment. Modulation of sphingolipids by 13'-COOHs was observed prior to or coinciding with biochemical manifestation of cell death. Pharmaceutically blocking the increase of these sphingolipids partially counteracted 13'-COOH-induced cell death. Further, 13'-COOH inhibited dihydroceramide desaturase without affecting the protein expression. In agreement with these mechanistic findings, δ TE-13'-COOH significantly suppressed the growth and multiplicity of colon tumor in mice. Our study demonstrates that 13'-COOHs have anti-inflammatory and anticancer activities may contribute to *in vivo* anticancer effect of vitamin E forms and are promising novel cancer prevention agents.

Biography

Qing Jiang is a Professor in Nutrition Science at Purdue. She has focused on different forms of vitamin E and novel vitamin E metabolite long-chain carboxychromanols with respect to their anti-inflammatory and anticancer activities in cell-based and preclinical studies. Her lab has developed various analytical methods for quantifying vitamin E metabolites. Dr. Jiang has 45 publications and obtained three patents. She is a member of the editorial board of Journal of Nutritional Biochemistry. She has served as a reviewer in study sections of NIH and USDA. She is a recipient of E.L.R. Stokstad Award for outstanding fundamental research in nutrition from American Society for Nutrition and University Faculty Scholar Award from Purdue.

qjiang@purdue.edu

Notes: