World Immunology Congress

DECEMBER 14-15, 2017 DUBAI, UAE

Preferential recognition of advanced glycation end products by serum antibodies in diabetes mellitus

Alok Raghav and Jamal Ahmad Aligarh Muslim University, India

This study analyses the detrimental effect of non-enzymatic glycation on human serum albumin (HSA) leading to the production of advanced glycation end products (AGEs). HSA (20 μ M) incubated with glucose (400 mg/dL) formed AGEs confirmed by scanning electron microscopy. DNA-damage in subjects with diabetes mellitus was assessed with comet assay. Antibodies against *in vitro* formed AGEs were evaluated in the sera of diabetic patients by enzyme-linked immune-sorbent assay, Molecular docking to demonstrate affinity of native and glycosylated HSA with IgG. Low-grade systemic inflammation was quantified with IL-4, IL-6, TNF- α and NF- $\kappa\beta$ in serum and mRNA expression. The SEM showed the formation of aggregates in glycated-HSA. Serum auto-antibodies from diabetes patients with chronic kidney disease (CKD) showed appreciably high recognition of glycated-HSA compared to native HSA. Comet showed severe DNA damage in subjects with CKD compared to healthy. Molecular docking showed less affinity of glycosylated-HSA with IgG compared to native-HSA. Serum IL-4, IL-6 and TNF- α were found significantly higher in subjects with CKD compared to T2DM and healthy. mRNA expression of IL-4, IL-6 and NF- $\kappa\beta$ are also found significantly higher in CKD. The non-enzymatic glycation-induced damage to the HSA and generate neo-epitopes that possess immunogenic response and low-grade systemic inflammation.

alokalig@gmail.com