7th International Congress on

BIOFUELS AND BIOENERGY

October 02-04, 2017 Toronto, Canada

Determination of pyruvate decarboxylase activity from sulfolobus solfataricus

Faisal Alharbi, Edicon Tze Shun Chan, Kesen Ma, Thomas Knura and Bettina Siebers University of Waterloo, Canada

Pyruvate decarboxylase (PDC) is a key enzyme in a two-enzyme pathway for the production of ethanol (1). It catalyzes the non-oxidative decarboxylation of pyruvate to acetaldehyde that is reduced to ethanol. No commonly-known PDC has been found in hyperthermophiles, a group of microorganisms growing optimally at 80°C and above. Although bifunctional PDCs with a pyruvate ferredoxin oxidoreductase (POR) activity have been purified and characterized from several hyperthermophilic bacteria and archaea (2,3,4), they are oxygen-sensitive and CoA-dependent, which are typical features of PORs. It is known that PORs from hyperthermophilic crenarchaeon such as Sulfolobus solfataricus and Sulfolobus acidocaldarius (Topt = 80°C) are not O2-sensitive (4,5). However, it is not clear if their PORs would also have PDC activity. S. solfataricus was grown at 80°C, and its cell free extract (CFE) was prepared using a French Press. PDC activity was determined by measuring the rate of acetaldehyde formation from pyruvate using a high-performance liquid chromatography (HPLC). Its POR activity was measured by monitoring the pyruvate-dependent reduction of benzyl viologen at 578 nm. Its PDC activity was determined to be 2.5 mU/mg at optimal pH of 7 and temperature of 90oC. Its POR activity was measured to be 1.57 U/mg under the same pH and temperature conditions. Both activities were not O2-sensitive. In conclusion, it is the most thermostable and non-O2-sensitive PDC determined. The PDC enzyme will be purified using a fast performance liquid chromatography system for further characterization.

Biography

Faisal Alharbi is a graduate student from the University of Waterloo, Canada

falharbi@uwaterloo.ca

Notes: