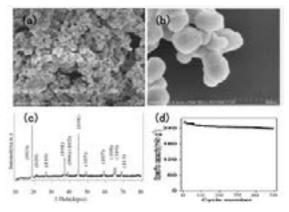
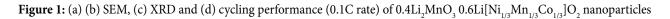
2nd International Conference on


Battery and Fuel Cell Technology


July 27-28, 2017 | Rome, Italy

$Nano-sized\ lithium-rich\ cathode\ 0.4 Li_2 MnO_3\ 0.6 Li [Ni_{1/3} Mn_{1/3} Co_{1/3}]O_2\ prepared\ by\ resorcinol-formal dehyde\ assisted\ sol-gel\ method$

Yujie Li, Gangyan Li, Di Lu and Chunman Zheng National University of Defense Technology, China

Recently, layered lithium-rich cathode materials, xLi₂MnO₃ (1-x)LiMO₂(M=transition metal) have been considered as one of the most promising cathode materials due to their high specific capacity (200-300 mAhg⁻¹) and high operating voltage. However, lithium-rich cathode materials still suffer from several major defects, such as low coulomb efficiency, the poor long-term capacity retention, and the inferior rate performance. As we know, nano-sized cathode is an effective method, the nano dimension provided more active surface sites for lithium storage, and also shortened the lithium-diffusion pathways, and these could improve electrochemistry performance. Herein, we prepared nano particle lithium-rich layered 0.4Li₂MnO₃0.6Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O₂ by resorcinol-formaldehyde assisted sol-gel method. Nano-sized lithium-rich cathode presented excellent cycling performance. It showed a high initial discharge capacity of 256.8mAh g⁻¹ and an initial coulomb efficiency of 78.9%. The discharge capacity after 50 cycles was 240.2mAh g⁻¹ with capacity retention of 93.5% due to more active surface sites and shortens lithium-diffusion pathways of nanoparticles. Figure 1(a)(b) demonstrate its SEM images. Lithium-rich nanoparticles are about 250 nm-300 nm. Figure 1(c) showed the XRD pattern, it formed the good layered crystallizability. Figure 1(d) demonstrates, it has good capacity retention. These results indicate the nano-sized lithium-rich cathode could effectively suppress capacity attenuation and enhance coulomb efficiency and cycling performance.

Biography

Yujie Li studies energy materials and their electrochemistry, including synthesis of cathode material, anode material, and all-solid lithium battery as well as their applications in lithium storage and conversion. He received his Bachelor's degree in Materials Chemistry at Lanzhou University, China in 2003; Master's degree in Materials Physics Chemistry in 2006 and; Doctor's degree in Materials Science & Engineering in 2010 at National University of Defense Technology, China. He is now an Assistant Professor in Department of Materials Science & Engineering at National University of Defense Technology, China.

powerlyj@163.com

Notes:

J Fundam Renewable Energy Appl, an open access journal ISSN: 2090-4541