Antimicrobials, Multiple Drug Resistance & Antibiotics Resistance

4th International Conference on

April 20-21, 2018 April 20-21, 2018 Las Vegas, Nevada, USA

Lipase-catalyzed synthesis of a functional xylitol ester of 7,10-dihydroxy-8(E)-octadecenoic acid

Yeon-Jung Lee¹, Ji-Sun Moon¹, Hyung-Geun Lee¹, Ching T Hou² and Hak-Ryul Kim¹ ¹Kyungpook National University, Korea ²USDA, USA

Tydroxy fatty acids have been widely studied because they have various biological properties that can be utilized in many Hydroxy fatty acids have been widely studied because tincy have various choregoed program program and the hydroxy fatty acids, our research group focused on hydroxy fatty acids, our research group focused on hydroxy fatty acids activities of DOD against food-7,10-dihydroxy-8(E)-octadecenoic acid (DOD). We confirmed that the strong antibacterial activities of DOD against foodborne pathogenic bacteria and plant pathogenic bacteria. Saccharide-fatty acid esters are important biodegradable emulsifiers in foods, cosmetics, and pharmaceuticals, hence, we focused on enzymatic synthesis of DOD-saccharide esters for industrial utilization of DOD. Several saccharides were screened as a substrate for esterification with DOD. As a result, DOD xylitol ester was successfully produced at 50 with stirring at 200rpm for 24 hours in the presence of lipozyme RMIM as enzyme, and t-butyl alcohol as solvent. Its structure was confirmed by GC/MS.

Biography

Yeon-Jung Lee is a graduate student in School of Food Science and Biotechnology, Kyungpook National University in Daegu Korea.

hakrkim@knu.ac.kr

Notes: