10th International Congress on

STRUCTURAL BIOLOGY October 18-19, 2018 Helsinki, Finland

Structure of two membrane proteins BacA and bsPgpB involved in the metabolism of undecaprenyl-phosphate $\rm C_{55}\text{-}P$

Meriem El Ghachi University of Liege, Belgium

Undecaprenyl-phosphate C_{55} -P is a key lipid carrier of glycan intermediate required for the synthesis of a variety of cell wall polymers such as Peptidoglycan (PG), Lipopolysaccharides (LPS) O-antigen wall teichoic acids, capsular polysaccharide, common enterobacterial antigen, membrane-derivative oligosaccharides and exopolysaccharides. In bacteria, during peptidoglycan synthesis, the phospho-N-acetylmuramoyl (-pentapeptide) -N-acetyl glucosamine is the essential motif carried by the C_{55} -P. The resulting lipid, C_{55} -PP-MurNAc-(pentatpetide)-GlucNAc (lipid II), is translocated towards the periplasmic side by several putative flippases. The MurNAc-(pentatpetide)-GlucNAc is added to the elongating chains of PG and C_{55} -P is released as C_{55} -P. This precursor is also provided by the *de novo* synthesis in the cytosol that is catalyzed by a Cis-Prenyl Pyrophosphate Synthase, UPPS, which successively adds eight isoprene units from C_5 -PP on farnesyl pyrophosphate. Two families of phosphatases can perform the subsequent dephosphorylation of C_{55} -P. Pinto C_{55} -P. common to the *in vitro* synthesis and carrier lipid recycling. In *E. coli*, 1 BacA and 3 phosphatidic acid phosphatases 2 (PgpB, YbjG and LpxT), active on C_{55} -PP have been identified. PgpB being also involved in the phosphatidyl glycerol metabolism and LpxT transferring the phosphate from C_{55} -PP to lipid A. Whereas *Bacillus subtilis* has three C_{55} -PP phosphatases 1 BacA (YubB) and 2 phosphatidic acid phosphatases 2 (YwoA and YodM). We obtained the structure of BacA using lipidic cubic phase method. The crystal structure at 2.6 A revealed an unexpected fold according to the previous biochemical studies. Moreover, we solved the structure of bsPgpB (yodM) in the presence and absence of its favorite substrate, phosphatidyl glycerol.

Biography

Meriem El Ghachi has completed her PhD from Paris University of Paris-Sud, France. He is a Post-doctorate at University of Liege, Belgium. She has published 17 papers in reputed journals.

elghachi_meriem@yahoo.fr

Notes: