Structures of n-Lie algebra A^n

BAI Ruipu

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China
email: bairuipu@hbu.edu.cn

Zhang Yan

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Lin Lixin

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Guo Weiwei

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Abstract

In this paper, we discuss the structure of the exterior direct sum n-Lie algebra $(A^n, [\cdot, \cdot, \cdot, [\cdot]])$ of an n-Lie algebra A. And it is proved that, (1) if I_1, \cdots, I_{n-1} are ideals of an n-Lie algebra A, then the vector space $(I_1, I_2, \cdots, I_{k-1}, I_1, I_{k+1}, \cdots, I_{n-1})$ is also an ideal of $(A^n, [\cdot, \cdot, \cdot, [\cdot]])$, and if I is a solvable (nilpotent) ideal of A, then I^n is also solvable (nilpotent). (2) For a linear mapping $\delta \in \text{End}(A)$, then δ is a derivation of A if and only if $f_\delta \in \text{Hom}(A, A^n)$ is an n-Lie algebra homomorphism. (3) If (V, ρ) is an A-module, then $(V^n, \bar{\rho})$ is an A^n-module.

2010 Mathematics Subject Classification: 17B05 17D30
Keywords: n-Lie algebra, exterior direct sum n-Lie algebra, derivation, module.
1 Preliminary

In the paper [1], authors provided the exterior direct sum n-Lie algebras of n-Lie algebras [2, 3]. In this paper, we mainly study the structures of the exterior direct sum n-Lie algebra of a given n-Lie algebra. First, we recall some notions. Let A be a vector space. The direct sum vector space of A is $A^n = \{(x_1, \cdots, x_n) \mid x_i \in A, 1 \leq i \leq n\}$, satisfying that for all $X = (x_1, \cdots, x_n)$ and $Y = (y_1, \cdots, y_n) \in A^n$ and $\lambda \in F$,

$$X + Y = (x_1, \cdots, x_n) + (y_1, \cdots, y_n) = (x_1 + y_1, \cdots, x_n + y_n),$$

$$\lambda X = \lambda (x_1, \cdots, x_n) = (\lambda x_1, \cdots, \lambda x_n).$$

An n-Lie algebra [3] is a vector space A over a field F endowed with an n-ary multilinear skew-symmetric multiplication satisfying that for all $x_1, \cdots, x_n, y_2, \cdots, y_{n-1} \in A$,

$$[[x_1, \cdots, x_n], y_2, \cdots, y_n] = \sum_{i=1}^{n} [x_1, \cdots, [x_i, y_2, \cdots, y_n], \cdots, x_n]. \quad (1)$$

The identity (1) is usually called the n-Jacobi identity.

Let A be an n-Lie algebra. A derivation of an n-Lie algebra A is a linear mapping $D : A \rightarrow A$ satisfying that

$$D([x_1, \cdots, x_n]) = \sum_{i=1}^{n} [x_1, \cdots, D(x_i), \cdots, x_n], \quad \forall x_1, \cdots, x_n \in A.$$

By Eq.(1), for $x_1, \cdots, x_{n-1} \in A$, the left multiplication $ad(x_1, \cdots, x_{n-1}) : A \rightarrow A$ defined by for all $x \in A$, $ad(x_1, \cdots, x_{n-1}, x) = [x_1, \cdots, x_{n-1}, x]$ is a derivation of A. All the derivations of A, denoted by $Der(A)$, is a subalgebra of the general linear algebra $gl(A)$.

Let A be an n-Lie algebra and V be a vector space. If there exists a linear mapping $\rho : A^{\wedge(n-1)} \rightarrow End(V)$ satisfying that for all $x_i, y_i \in A, i = 1, \cdots, n$,

$$\rho([x_1, \cdots, x_n], y_2, \cdots, y_{n-1})$$

$$= \sum_{i=1}^{n} (-1)^{n-i} \rho(x_1, \cdots, \hat{x_i}, \cdots, x_n) \rho(x_i, y_2, \cdots, y_{n-1}), \quad (2)$$

$$[\rho(x_1, \cdots, x_{n-1}), \rho(y_1, \cdots, y_{n-1})] = \sum_{i=1}^{n} \rho(y_1, \cdots, [x_1, \cdots, x_{n-1}, y_i], \cdots, y_{n-1}) \quad (3)$$

then (V, ρ) is called a representation of A, or V is an A-module [4].

As an example, the linear mapping $\rho : A^{\wedge2} \rightarrow End(A)$ defined by for all $x_1, \cdots, x_{n-1} \in A$, $\rho(x_1, \cdots, x_{n-1}) = ad(x_1, \cdots, x_{n-1})$, (A, ad) is an A-module, which is called the adjoint module of A.

Let A be an n-Lie algebra and V be a subspace of A. If V satisfies that $[V, \cdots, V] \subseteq V$, then V is a subalgebra of the n-Lie algebra A. If V satisfies that $[V, A, \cdots, A] \subseteq V$, then V is called an ideal of the n-Lie algebra A. If V satisfies that $[V, \cdots, V] = 0$ ($[V, V, A, \cdots, A] = 0$), then V is called an abelian subalgebra (an abelian ideal).
2 Structures of n-Lie algebra A^n

Lemma 2.1 Let A be an n-Lie algebra. Then for any $s \geq 2$, A^n is an n-Lie algebra in the multiplication $[\cdots,\cdot,\cdots]_s$, where for all $X_j = (x_1^j, \cdots, x_n^j) \in A^n$, $j = 1, \cdots, n$,

$$[X_1, \cdots, X_n]_s = \left(\sum_{i=1}^{n} [x_1^i, \cdots, x_1^n, [x_2^i, \cdots, x_2^n, \cdots, [x_n^i, \cdots, x_n^n]]_s \right).$$

The n-Lie algebra $(A^n, [\cdots,\cdot,\cdots])$ is called the exterior direct sum n-Lie algebra. For the similarity, in the following, we mainly discuss the case $s = 2$.

Theorem 2.2 Let A be an n-Lie algebra, $I_i, i = 1, \cdots, n-1$ be ideals of A. Then

$$U = (I_1, I_1, I_2, \cdots, I_{n-1}) = \{(x_1, \cdots, x_n) \mid x_1, x_2 \in I_1, x_i \in I_i, 3 \leq i \leq n\}$$

is an ideal of $(A^n, [\cdots,\cdot,\cdots])$.

Proof For all $(y_1, \cdots, y_n) \in U$, $x_i \in A, 1 \leq i \leq n$, $2 \leq j \leq n$, by Eq.(4),

$$[(y_1, \cdots, y_n), (x_1^2, \cdots, x_n^2), (x_1^3, \cdots, x_n^3)]_2 = ([y_1, x_2^2, \cdots, x_n^2], [y_2, x_2^2, \cdots, x_2^2], \cdots, [y_n, x_n^2, \cdots, x_n^2]) + (\sum_{i=2}^{n} [y_1, \cdots, x_i^2, \cdots, x_n^2, y_2, x_2^2, \cdots, x_2^2, \cdots, [y_n, x_n^2, \cdots, x_n^2]).$$

Since I_j for $j = 1, \cdots, n-1$ are ideals of A and $y_1, y_2 \in I_1$, we obtain that $[(y_1, \cdots, y_n), (x_1^2, \cdots, x_n^2), (x_1^3, \cdots, x_n^3)]_2 \in U$. It follows the result.

Theorem 2.3 Let A be an n-Lie algebra, I_1, \cdots, I_{n-1} be ideals of the n-Lie algebra A. Then for any $3 \leq k \leq n$, $U_k = (I_1, I_2, \cdots, I_{k-1}, I_k, I_{k+1}, \cdots, I_{n-1})$ is an ideal of the n-Lie algebra $(A_n, [\cdots,\cdot,\cdots]).$

Proof The proof is similar to Theorem 2.2.

Theorem 2.4 Let A be an n-Lie algebra, I be a solvable (nilpotent) ideal of A. Then I^r is a solvable (nilpotent) ideal of the n-Lie algebras $(A^n, [\cdots,\cdot,\cdots])$, $2 \leq k \leq n$. Especially, if I is an abelian ideal of the n-Lie algebra A, then $W = (I, \cdots, I)$ is an abelian ideal.

Proof By Theorem 2.2, I^n is an ideal of n-Lie algebras $(A^n, [\cdots,\cdot,\cdots])$, $3 \leq k \leq n$. We only need to prove the solvability and the nilpotency. Since the similarity, we only prove the case $k = 2$. Denote $W = (I, \cdots, I)$. By hypothesis, there exists a number $s \geq 0$ such that $I^{(s)} = 0$. We will show that for any $r \geq 0$, $W^{(r)} \subseteq (I^{(r)}, \cdots, I^{(r)})$.

For all $y_i^l \in I$, $x_i^l \in A, 1 \leq l \leq 2; 3 \leq j \leq n; 1 \leq i \leq n$, suppose

$$[(y_1^1, \cdots, y_n^1), (y_2^1, \cdots, x_n^2), (x_1^3, \cdots, x_n^3), \cdots, (x_1^n, \cdots, x_n^n)]_2 = (z_1, \cdots, z_n).$$

Thanks to Eq.(4), for $2 \leq t \leq n$, $z_t = [y_1^1, y_1^2, x_1^3, \cdots, x_t^2] \in I^{(1)}$, and

$$z_1 = [y_1^1, y_2^2, x_1^3, \cdots, x_2^2] + [y_2^1, y_1^2, x_2^3, \cdots, x_2^2] + \sum_{l=3}^{n} [y_1^l, y_2^l, x_2^2, \cdots, x_2^2] \in I^{(1)}.$$
Therefore, \(z_i \in I^{(1)} \) for \(1 \leq t \leq n \), we obtain \(W^{(1)} \subseteq (I^{(1)}, \cdots, I^{(1)}) \).

Now suppose \(W^{(s-1)} \subseteq (I^{(s-1)}, \cdots, I^{(s-1)}) \). By Theorem 2.2 and a similar discussion, we have
\[
W^{(s)} = [W^{(s-1)}, W^{(s-1)}, A^n, \cdots, A^n]_2 \subseteq (I^{(s)}, \cdots, I^{(s)}).
\]
Since \(I^{(s)} = 0 \), we have \(W^{(s)} = 0 \), that is, \(W \) is solvable.

Similar discussion, if \(I \) is nilpotent, then \(W \) is a nilpotent ideal of the exterior direct sum \(n \)-Lie algebra \(A^n \).

If \(I \) is an abelian ideal, then \([I, I, A, \cdots, A] = 0 \). Then for all \(X_i = (x_i^1, \cdots, x_i^n) \in A^n \), \(1 \leq i \leq n \), where \(X_1, X_2 \in I^n \), by Eq.(4), \([X_1, X_2, X_3, \cdots, X_n]_2 = 0\). Therefore, \(I^n \) is an abelian ideal. The proof is complete.

Now we discuss the relation between derivations of \(A \) with \((A^n, [\cdot, \cdots, \cdot]_k)\), for \(k \geq 3 \). Since the similarity of the discussion, we only study the case \(k = 2 \).

For convenience, in the following the exterior direct sum \(n \)-Lie algebra \((A^n, [\cdot, \cdots, \cdot], _2)\) of an \(n \)-Lie algebra \(A \) is simply denoted by \(A_n \).

Theorem 2.5 Let \(A \) be an \(n \)-Lie algebra, \(\delta \in \text{End}(A) \). Define linear mapping \(f_\delta : A \to A^n \) by the formula
\[
f_\delta(x) = (\delta x, x, \cdots, x), \forall x \in A.
\] (5)

Then \(\delta \) is a derivation of \(A \) if and only if \(f_\delta \) is an algebra homomorphism.

Proof If \(\delta \) is a derivation of \(A \). Then for all \(x_i \in A, i = 1, \cdots, n \), by Eq.(4) and Eq.(5),
\[
f_\delta([x_1, x_2, \cdots, x_n]) = \delta([x_1, x_2, \cdots, x_n]), [x_1, \cdots, x_n], \cdots, [x_1, \cdots, x_n]),
\]
\[
[\delta(x_1), \cdots, f_\delta(x_n)]_2
\]
\[
= ([\delta(x_1), \cdots, x_1], (\delta(x_2), \cdots, x_2), \cdots, (\delta(x_n), \cdots, x_n)]_2
\]
\[
= (\sum_{i=1}^{n} [x_1, \cdots, \delta(x_i), \cdots, x_n], [x_1, \cdots, x_n], \cdots, [x_1, \cdots, x_n]).
\]
Since \(\delta([x_1, x_2, \cdots, x_n]) = \sum_{i=1}^{n} [x_1, \cdots, \delta(x_i), \cdots, x_n] \), we have
\[
f_\delta([x_1, x_2, \cdots, x_n]) = [\delta(x_1), f_\delta(x_2)]_2.
\]

Conversely, if \(f_\delta \) is an \(n \)-Lie algebra homomorphism, then for all \(x_i \in A, 1 \leq i \leq n \), \(f_\delta([x_1, \cdots, x_n]) = f_\delta([x_1, x_2, x_3, \cdots, x_n]) \). Thanks to Eq.(4) and Eq.(5),
\[
[\delta(x_1), \cdots, x_1], (\delta(x_2), \cdots, x_2), \cdots, (\delta(x_n), \cdots, x_n)]_2
\]
\[
= (\sum_{i=1}^{n} [x_1, \cdots, \delta(x_i), \cdots, x_n], [x_1, x_2, \cdots, x_n], \cdots, [x_1, x_2, \cdots, x_n])
\]
\[
= (\delta([x_1, x_2, \cdots, x_n]), \cdots, [x_1, x_2, \cdots, x_n]).
\]
Therefore, \(\delta([x_1, x_2, \cdots, x_n]) = \sum_{i=1}^{n} [x_1, \cdots, \delta(x_i), \cdots, x_n] \), that is, \(\delta \) is a derivation of \(A \). The proof is complete.

At last of the paper, we study the representation of the exterior direct sum \(n \)-Lie algebras. Let \(A \) be an \(n \)-Lie algebra, \(V \) be a vector space and \(\rho : A^{n-1} \to \text{End}(V) \) be a linear mapping. By the paper [4], \((V, \rho) \) is an \(n \)-Lie algebra \(A \)-module if and only if the direct sum vector space \(B = A \oplus V \) is an
n-Lie algebra in the following multiplication, for all $x_i \in A, v \in V, 1 \leq i \leq n,$

$$[x_1, \cdots, x_n]_B = [x_1, \cdots, x_n], \quad [x_1, \cdots, x_{n-1}, v]_B = \rho(x_1, \cdots, x_{n-1})v,$$

and V is an abelian ideal, that is, $[A, \cdots, A, V, V]_B = 0.$ Then we have the following result.

Theorem 2.6 Let A be an n-Lie algebra, (V, ρ) be a representation of n-Lie algebra A. Then $(V^n, \bar{\rho})$ is a representation of the exterior direct sum n-Lie algebra A^n, where the linear mapping $\bar{\rho} : (A^n)^{\wedge n-1} \to \text{End}(V^n)$ defined by for all $X_i = (x_1^i, \cdots, x_n^i) \in A^n, 1 \leq i \leq n-1,$ and $u = (u_1, \cdots, u_n) \in V^n,$

$$\bar{\rho}(X_1, \cdots, X_{n-1})u = (\sum_{i=1}^{n-1} \rho(x^i_2, \cdots, x^i_1, x^i_{n-1})u_2 + \rho(x^1_2, \cdots, x^{n-1}_2)u_1, \rho(x^2_1, \cdots, x^{n-1}_1)u_2, \cdots, \rho(x^n_1, \cdots, x^1_1)u_n).$$

Proof Since (V, ρ) is a representation of $A,$ then $(B = A \oplus V, [\cdots, \cdots,]_B)$ is an n-Lie algebra. Therefore, we obtain the exterior direct sum n-Lie algebra $(B^n, [\cdots, \cdots,]_B)$ of the n-Lie algebra $(B = A \oplus V, [\cdots, \cdots,]_B).$ From V is an abelian ideal of $B,$ and Theorem 2.2, V^n is an abelian ideal of the n-Lie algebra $(B^n, [\cdots, \cdots,]_B).$

Define linear mapping $\bar{\rho} : (A^n)^{\wedge n-1} \to \text{End}(V^n)$ by for all $X_1, \cdots, X_{n-1} \in A^n, w = (w_1, \cdots, w_n) \in V^n,$

$$\bar{\rho}(X_1, \cdots, X_{n-1})(w) = \text{ad}_{B^n}(X_1, \cdots, X_{n-1})(w) = [X_1, \cdots, X_{n-1}, w]_2.$$

By a direct computation, $\bar{\rho}$ satisfies Eq.(2) and Eq.(3). Therefore, $(V^n, \bar{\rho})$ is a representation of $A^n.$ The proof is complete.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

Received: August 31, 2016