Strong Convergence of Mann Iteration for a Hybrid Pair of Mappings in a Banach Space

G. V. R. Babu
Department of Mathematics
Andhra University, Visakhapatnam-530 003,
Andhra Pradesh, India;
e-mail address: gvr_babu@hotmail.com

G. N. Alemayehu
Department of Mathematics,
Jimma University, P.O.Box 378,
Jimma, Ethiopia
e-mail address: alemg1972@gmail.com

Abstract
We prove the strong convergence of Mann iteration for a hybrid pair of maps to a common fixed point of a selfmap f and a multi-valued f-nonexpansive mapping T in Banach space E. Our result extend Theorem 2.3 of Song and Wang [Y. Song, H. Wang, Convergence of iterative algorithms for multi-valued mappings in Banach spaces, Nonlinear Analysis, 70 (2009), 1547–1556] to a hybrid pair of maps.

Mathematics Subject Classification: 54 H 25

Keywords: Strong convergence, Mann iteration, common fixed point, Multi-valued nonexpansive mapping

1 Introduction

Let E be a Banach space and K, a nonempty subset of E. We denote by 2^E, the family of all subsets of E; $CB(E)$, the family of nonempty closed and bounded subsets of E and $C(E)$, the family of nonempty compact subsets of E. Let $f : K \to K$ be a selfmap. Let H be a Hausdorff metric on $CB(E)$. That is, for $A, B \in CB(E)$,

$$H(A, B) = \max \left\{ \sup_{x \in A} d(x, B), \sup_{x \in B} d(x, A) \right\},$$
where
\[d(x, B) = \inf \{ \| x - y \| : y \in B \}. \]

A multi-valued mapping \(T : K \to 2^K \) is called \(f \)-nonexpansive if
\[H(Tx, Ty) \leq \| fx - fy \|, \]
for all \(x, y \in K \).

If \(f = I_K \), the identity mapping on \(K \), then we call \(T \) is a multi-valued nonexpansive mapping.

A point \(x \) is a fixed point of \(T \) if \(x \in Tx \). A point \(x \) is called a common fixed point of \(f \) and \(T \) if \(fx = x \in Tx \).

\(F(T) = \{ x \in K : x \in Tx \} \) stands for the fixed point set of a mapping \(T \) and \(F = F(T) \cap F(f) = \{ x \in K : fx = x \in Tx \} \) stands for the common fixed point set of maps \(f \) and \(T \).

Recently, Song and Wang [2] introduced the following Mann iterates of a Multi-valued mapping \(T \):

Let \(K \) be a nonempty convex subset of a Banach space \(E \), \(\alpha_n \in [0,1] \) and \(\gamma_n \in (0, \infty) \) such that \(\lim_{n \to \infty} \gamma_n = 0 \). Let \(T : K \to CB(K) \) be a multi-valued mapping. Let \(x_0 \in K \), and
\[x_{n+1} = (1 - \alpha_n)x_n + \alpha_n y_n, \quad (1) \]
where \(y_n \in Tx_n \) such that \(\| y_{n+1} - y_n \| \leq H(Tx_{n+1}, Tx_n) + \gamma_n, n = 0, 1, 2, \ldots \).

Song and Wang [2] established the following theorems on the convergence of Mann iteration.

Theorem 1.1 (Theorem 2.3, Song and Wang [2]). Let \(K \) be a nonempty, compact and convex subset of a Banach space \(E \). Suppose that \(T : K \to CB(K) \) is a multi-valued nonexpansive mappings for which \(F(T) \neq \emptyset \) and for which \(T(y) = \{ y \} \) for each \(y \in F(T) \). For \(x_0 \in K \), let \(\{ x_n \} \) be the Mann iteration defined by (1). Assume that
\[0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1. \]
Then the sequence \(\{ x_n \} \) strongly converges to a fixed point of \(T \).

The aim of this paper is to prove the strong and weak convergence of Mann iteration for a hybrid pair of maps to a common fixed point of a selfmap \(f \) and a multi-valued \(f \)-nonexpansive mapping \(T \) in Banach space \(E \). Our results extend the results of Song and Wang [2] to a hybrid pair of maps.
2 Preliminary Notes

Throughout this paper E denotes real Banach space. We denote the strong convergence of $\{x_n\}$ to x in E by $x_n \to x$.

Lemma 2.1 (Nadler [1]). Let (E, d) be a complete metric space, and $A, B \in CB(E)$ and $a \in A$. Then for each positive number ε, there exists $b \in B$ such that
\[
d(a, b) \leq H(A, B) + \varepsilon.
\]

Lemma 2.2 (Suzuki [3]). Let $\{x_n\}$ and $\{y_n\}$ be two bounded sequences in a Banach space E and $\beta_n \in [0, 1]$ with
\[
0 < \lim\inf_{n \to \infty} \beta_n \leq \lim\sup_{n \to \infty} \beta_n < 1.
\]
Suppose $x_{n+1} = \beta_n x_n + (1 - \beta_n)y_n$ for all integers $n \geq 1$ and
\[
\lim\sup_{n \to \infty}(\|y_{n+1} - y_n\| - \|x_{n+1} - x_n\|) \leq 0.
\]
Then $\lim_{n \to \infty} \|x_n - y_n\| = 0$.

We will construct the following iteration. Let K be a nonempty subset of a metric space X. Let $f : K \to K$, $T : K \to CB(K)$ with $f(K)$ is convex and $Tx \subseteq f(K)$ for all $x \in K$. Let $\alpha_n \in [0, 1]$, and $\gamma_n \in (0, \infty)$ such that $\lim_{n \to \infty} \gamma_n = 0$. Choose $x_0 \in K$ and $y_0 \in Tx_0$. Let $z_0 = fx_0$ and
\[
z_1 = fx_1 = (1 - \alpha_0)fx_0 + \alpha_0 y_0
\]
\[
= (1 - \alpha_0)z_0 + \alpha_0 y_0.
\]
From Lemma 2.1, there exists $y_1 \in Tx_1$ such that
\[
\|y_1 - y_0\| \leq H(Tx_1, Tx_0) + \gamma_0.
\]
Let
\[
z_2 = fx_2 = (1 - \alpha_1)z_1 + \alpha_1 y_1.
\]
Inductively, we have
\[
z_{n+1} = fx_{n+1} = (1 - \alpha_n)z_n + \alpha_n y_n,
\]
(2)
where $y_n \in Tx_n$ such that
\[
\|y_{n+1} - y_n\| \leq H(Tx_{n+1}, Tx_n) + \gamma_n, \quad n = 0, 1, 2, \ldots.
\]
3 Main Results

These are the main results of the paper.

Proposition 3.1 Let K be a nonempty subset of a Banach space E. Let $f : K \to K$ be a selfmap with $f(K)$ is convex. Suppose $T : K \to CB(K)$ is a multi-valued f-nonexpansive mapping and $Tx \subseteq f(K)$ for all $x \in K$. For $x_0 \in K$, let $\{z_n\}$ be the Mann iteration associated with the maps T and f, defined by (2) and assume also that

$$0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1.$$

Then $\lim_{n \to \infty} \|z_n - y_n\| = 0$ and $\lim_{n \to \infty} d(z_n, Tx_n) = 0$.

Proof. From the definition of the Mann iteration $\{z_n\}$ given by (2), it follows that $z_{n+1} = (1 - \alpha_n)z_n + \alpha_n y_n$, where $y_n \in Tx_n$ such that

$$\|y_{n+1} - y_n\| \leq H(Tx_{n+1}, Tx_n) + \gamma_n$$

$$\leq \|z_{n+1} - z_n\| + \gamma_n, \quad n = 0, 1, 2, \ldots.$$

Therefore,

$$\limsup_{n \to \infty} (\|y_{n+1} - y_n\| - \|z_{n+1} - z_n\|) \leq \limsup_{n \to \infty} \gamma_n = 0.$$

Hence, all conditions of Lemma 2.2 are satisfied. Hence, by Lemma 2.2, we obtain $\lim_{n \to \infty} \|z_n - y_n\| = 0$.

Since $y_n \in Tx_n$ for all $n = 0, 1, 2, \ldots$, we have $d(z_n, Tx_n) \leq \|z_n - y_n\|$.

Hence, $\lim_{n \to \infty} d(z_n, Tx_n) = 0$.

Theorem 3.2 Let K be a nonempty compact subset of a Banach space E. Let $f : K \to K$ be a continuous selfmap with $f(K)$ is convex. Suppose $T : K \to CB(K)$ is a multi-valued f-nonexpansive mapping for which $Tx \subseteq f(K)$ for all $x \in K$; $F(T) \cap F(f) \neq \emptyset$, and $d(x, Tx) \leq d(fx, Tx)$ for all $x, y \in K$. For $x_0 \in K$, let $\{z_n\}$ be the Mann iteration associated with the maps T and f, defined by (2) and assume also that

$$0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1.$$

If $T(y) = \{y\}$ for each $y \in F(T)$, then the Mann iteration $\{z_n\}$ strongly converges to a common fixed point of f and T.

Proof. It follows from Proposition 3.1 that \(\lim_{n \to \infty} d(z_n, Tx_n) = 0 \).
Further, since \(d(x_n, Tx_n) \leq d(z_n, Tx_n) \) we get \(\lim_{n \to \infty} d(x_n, Tx_n) = 0 \).
Now let \(p \in F(T) \cap F(f) \). Then,
\[
\|z_{n+1} - p\| \leq (1 - \alpha_n)\|z_n - p\| + \alpha_n\|y_n - p\|
\leq (1 - \alpha_n)\|z_n - p\| + \alpha_nH(Tx_n, Tp)
\leq (1 - \alpha_n)\|z_n - p\| + \alpha_n\|z_n - p\|
= \|z_n - p\|, \ n = 0, 1, 2, \ldots.
\]
Then the sequence \(\{\|z_n - p\|\} \) is a decreasing sequence of nonnegative reals and
hence \(\lim_{n \to \infty} \|z_n - p\| \) exists for each \(p \in F(T) \cap F(f) \).

From the compactness of \(K \), there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(\lim_{k \to \infty} x_{n_k} = u \) for some \(u \in K \). By the continuity of \(f \), we have
\[
\lim_{k \to \infty} z_{n_k} = fu = q \text{ (say).}
\]
Now
\[
d(q, Tu) \leq \|q - z_{n_k}\| + d(z_{n_k}, Tx_{n_k}) + H(Tx_{n_k}, Tu)
\leq \|q - z_{n_k}\| + d(z_{n_k}, Tx_{n_k}) + \|fu - fx_{n_k}\|
= 2\|q - z_{n_k}\| + d(z_{n_k}, Tx_{n_k}) \to 0 \text{ as } k \to \infty.
\]
Hence, \(fu = q \in Tu \).

Also,
\[
d(u, Tu) \leq \|u - x_{n_k}\| + d(x_{n_k}, Tx_{n_k}) + H(Tx_{n_k}, Tu)
\leq \|u - x_{n_k}\| + d(x_{n_k}, Tx_{n_k}) + \|fu - fx_{n_k}\|
= \|u - x_{n_k}\| + d(x_{n_k}, Tx_{n_k}) + \|z_{n_k} - q\| \to 0 \text{ as } k \to \infty.
\]
Hence, \(u \in Tu \) so that \(Tu = \{u\} \).
Hence, \(fq = q \in Tq \).

Thus, \(q \) is a common fixed point of \(f \) and \(T \).
Now replacing \(q \) in place of \(p \), we get that \(\lim_{n \to \infty} \|z_n - q\| \) exists and hence
\[
\lim_{n \to \infty} \|z_n - q\| = 0.
\]
Hence the conclusion follows.

Corollary 3.3 If \(f = I_K \), the identity mapping on \(K \), we get Theorem 1.1.
Hence, Theorem 3.2 extends Theorem 1.1 to a hybrid pair of maps.

The following is an example in support of Theorem 3.2.
Example 3.4 Let $E = R$, the set of all real numbers, with the usual norm and $K = [\frac{1}{3}, 1]$. We define mappings $f : K \rightarrow K$ by $fx = 1 - \frac{1}{2}x$ and $T : K \rightarrow CB(K)$ by $Tx = [\frac{2}{3}, \frac{5}{6}x + \frac{1}{4}]$.

Here $f(K) = [\frac{1}{2}, \frac{2}{3}]$, $Tx \subseteq f(K)$ for all $x \in K$, and $F(f) \cap F(T) = \{\frac{2}{3}\} \neq \emptyset$.

Now we consider the following two cases.

Case (i): $x \in [\frac{2}{3}, 1]$.

Then, $fx = 1 - \frac{1}{2}x \geq \frac{2}{3}$, $Tx = [\frac{1}{2}x + \frac{1}{4}, \frac{2}{3}]$.

Thus we have $d(x, Tx) = \frac{1}{2}(\frac{2}{3} - x) = d(fx, Tx)$.

Case (ii): $x \in \left[\frac{2}{3}, \frac{1}{2}\right]$.

Then, $fx = 1 - \frac{1}{2}x \leq \frac{2}{3}$, $Tx = [\frac{2}{3}, \frac{1}{2}x + \frac{1}{4}]$.

Thus we have $d(x, Tx) = \frac{1}{2}(x - \frac{2}{3}) = d(fx, Tx)$.

Hence, from case (i) and case (ii), it follows that

$$d(x, Tx) = d(fx, Tx) \text{ for all } x \in K.$$

Also, T is f-nonexpansive on K, for, proceeding as in the above, we get

$$H(Tx, Ty) = \max\{\sup_{a \in Ty} d(Tx, a), \sup_{a \in Tx} d(a, Ty)\}$$

$$= |fx - fy| \text{ for all } x, y \in K;$$

and $Ty = \{y\}$ for each $y \in F(T) = \{\frac{2}{3}\}$.

Next we show that for any $x_0 \in K$, the Mann iteration defined by (2) converges to the unique common fixed point of f and T, which is the conclusion of Theorem 3.2.

Let $x_0 \in K$ be arbitrary. Let $\alpha_n \in [0, 1]$ be such that

$$0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1.$$

If $x_0 \in [\frac{1}{3}, \frac{2}{3}]$. Then $fx_0 = 1 - \frac{1}{2}x_0$ and $Tx_0 = [\frac{1}{3}x_0 + \frac{1}{4}, \frac{2}{3}]$. Choose $y_0 = \frac{1}{2}x_0 + \frac{1}{4}$. Then $y_0 \in TTx_0$, and $fx_1 = \frac{2}{3} + (\frac{1}{2} - \alpha_0)\left(\frac{2}{3} - x_0\right)$.

On continuing this process, inductively we get a sequence $\{x_n\}$ in K such that

$$fx_{n+1} = \frac{2}{3} + \frac{1}{2}\left(\frac{2}{3} - x_0\right) \prod_{j=0}^{n}(1 - 2\alpha_j), \; n = 0, 1, 2, \ldots.$$ (3)

If $x_0 \in [\frac{2}{3}, 1]$. Then $fx_0 = 1 - \frac{1}{2}x_0$ and $Tx_0 = [\frac{2}{3}, \frac{1}{2}x_0 + \frac{1}{4}]$. Again, choose $y_0 = \frac{1}{2}x_0 + \frac{1}{4}$. Then $y_0 \in TTx_0$, and $fx_1 = \frac{2}{3} - (\frac{1}{2} - \alpha_0)\left(x_0 - \frac{2}{3}\right)$.

On continuing this process, inductively we get a sequence $\{x_n\}$ in K such that

$$fx_{n+1} = \frac{2}{3} - \frac{1}{2}(x_0 - \frac{2}{3}) \prod_{j=0}^{n}(1 - 2\alpha_j), \; n = 0, 1, 2, \ldots.$$ (4)
Since $0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1$, there exist real numbers $0 < \gamma, \eta < 1$ such that $0 < \gamma \leq \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n \leq \eta < 1$, and hence there exists a positive integer N such that $\gamma \leq \alpha_n \leq \eta$ for all $n \geq N$.

Hence, $\beta = \sup_{j \geq N} |2\alpha_j - 1| \leq \max\{|2\gamma - 1|, |2\eta - 1|\} < 1$.

Now, by using (3) and (4) for $x_0 \in K$, we get

$$fx_{n+1} = \frac{2}{3} + \frac{1}{2} \left(\frac{2}{3} - x_0\right) \prod_{j=0}^{N-1} (1 - 2\alpha_j) \prod_{j=N}^{n} (1 - 2\alpha_j), \quad n \geq N. \quad (5)$$

Hence,

$$|fx_{n+1} - \frac{2}{3}| \leq \frac{1}{2} \left(\frac{2}{3} - x_0\right) \prod_{j=0}^{N-1} |1 - 2\alpha_j| \prod_{j=N}^{n} |1 - 2\alpha_j| \leq \frac{1}{2} \left(\frac{2}{3} - x_0\right) \prod_{j=0}^{N-1} |1 - 2\alpha_j| \beta^{n-N+1}, \quad n \geq N. \quad (6)$$

Hence, $fx_n \to \frac{2}{3}$ strongly as $n \to \infty$, and $\frac{2}{3}$ is a common fixed point of f and T.

References

Received: July, 2013