SOME PROBLEMS ON KAHLERIAN SPACE
WITH SEMI-SYMMETRIC METRIC F-CONNECTIONS

Dr. T.S. Chauhan¹, Dr. I.S. Chauhan², Dr. Y.K. Diwevide³, Priyanka Tiwari⁴
1. Associate Professor, Deptt. of Maths, Bareilly College, Bareilly(U.P.)
2. Assistant Professor, Deptt. of Maths, Ganjedundwara College, Ganjedundwara, Kasganj(U.P.)
3. Principal, Ganjedundwara College, Ganjedundwara, Kasganj(U.P.)
4. Research Scholar, Deptt. of Maths, Bareilly College, Bareilly(U.P.)

ABSTRACT:
This paper delineates the study of Kaehlerianspace with semi-symmetric metric F-connections. We have obtained few important theorems.

KEY WORDS:
Riemannian space, Kaehlerian space, semi-symmetric, F-connection.

1. INTRODUCTION:
An 2m-dimensional Kaehlerian space is a Riemannian space if it admits a structure tensor F_j^i satisfying [2,6]:

(1.1) F_j^i F_k^j = \delta_k^i
(1.2) F_j^i = - F_j^i
(1.3) \nabla_k F_j^i = 0,
(1.4) F_l^j - F_j^l
(1.5) F_j^i = 0,
(1.6) g^{ij} F_k^i = F_k^j.

It is easy to verify that in a totally real subspace M_n of Kaehlerian space M_{2m}, the following equations are satisfied [2,6,7]:

(1.7) F_s^a B_x^b = F_s^a B_x^b = 0,
(1.8) F_s^a C_i^x - F_s^a C_i^x = 0
Consequently yields
(1.9) F_s^a B_x^b = F_s^a B_x^b = 0,
(1.10) F_s^a B_x^b = F_s^a B_x^b = 0
By virtue of equations (1.2), (1.7), (1.8) and (1.13), we obtain
(1.14) f_a^i = f_a^i

Applying the complex structure tensor to equations (1.7), (1.8) and using equations
(1.9), (1.10), (1.11) and (1.14), we obtain
(1.16) f_a^i = f_a^i
(1.17) f_a^i = f_a^i
(1.18) f_a^i = f_a^i

Let *R_b^a c^d be the curvature tensor of the connection *F_b^a, then we have [1,7]:
(1.20) *R_b^a c^d = M_b^a c^d - \delta_b^a p_c d + \delta_b^a q_b d + p_a g_c d + p_a g_c d - F_b^a q_c d + F_a^a q_b d - q_a^a F_b d + q_a^a F_b d

Wherein M_b^a is the Riemannian curvature tensor of a Kaehlerian space M_{2m} and
(1.21) p_a = \nabla_a F_b - \nabla_a F_b + (1/2)p_a p_c q_b d
(1.22) q_a = \nabla_a q_b - \nabla_a q_b - (1/2)p_a p_c F_b d
(1.23) p_a = p_a g_c d
(1.24) q_a = q_a g_c d

In this regard, we have
(1.25) p_a = q_a F_b d
(1.26) q_a = - p_a F_b d
(1.27) p_a - p_b a = 0.

2. KAHLERIAN SPACE WITH SEMI-SYMMETRIC METRIC F-CONNECTIONS:
In n-dimensional totally real subspace M_n of a Kaehlerian space M_{2m} admits special semi-symmetric metric F-connection, then we observe that the equations (1.16), (1.17), (1.18) and (1.19), gives the following relations [3,5,6]:

Mathematica Aeterna, Vol. 5, 2015, no. 3, 417 - 419
(2.1) \(f_i^j = 0 \)

(2.2) \(f_j^i f_j^x = \delta_i^x \) and \((2.3) \) \(M_{xyij} f_i^j f_w^j = M_{xyw} \)

Wherein

(2.4) \(M_{xyzw} = M_{xyzw}^e g_{yw} \), \((2.5) \) \(M_{xyij} = M_{xyij}^k g_{kj} \)

and \(M_{xyij}^k \) denotes the curvature tensor of the connection induced in the normal bundle.

Ricci equation is given by [4]:

(2.6) \(M_{xyij} = M_{abcd} B_{abc}^x C_{cd}^y T_{xyij} \)

Wherein

(2.7) \(M_{abcd} = M_{abcd}^e g_{ed} \)

and \((2.8) \) \(T_{xyij} = H_{x,i} H_{y,j} - H_{x,i}^y H_{x,j} \)

Contracting the covariant form of equation (1.20) with \(B_{ab x} C_{cd} \) and making use of equations \((1.2), (1.4), (1.5), (1.7), (1.8), (1.9), (1.10), (1.11), (1.12), (1.21), (1.22), (1.23), (1.24), (1.25), (1.26), (1.27), (2.1) \) and \((2.6) \), we obtain

(2.9) * \(R_{abcd} B_{xy} C_{cd}^i j = M_{xyi} + T_{xyij} - f_{xj} p_{bc} B_{bc}^{xy} f_{ij} + f_{xj} p_{bc} B_{bc}^{xy} f_{ij} - f_{yj} p_{bc} B_{bc}^{xy} f_{ij} \)

\(+ f_{yj} p_{bc} B_{bc}^{xy} f_{ij} \)

Definition 2.1:

A Riemannian space \(M_n \) is called to be a M-Einstein [3] if

(2.10) \(M_{xy} = \frac{1}{n} M g_{xy} \)

Now, we assume that

(2.11) * \(R_{abcd} = \mu_{bc} F_{da} \)

and \((2.12) \) * \(R_{a b c d} = \mu_{bc} F_{da} \)

for some tensor \(\mu_{bc} \) in Kaehlerian space \(M_{2m} \).

In this regard, we have the following theorems:

Theorem 2.1:

Let \(M_n \) be a totally real subspace of a Kaehlerian space \(M_{2m} \) with special semi-symmetric F-connection whose curvature tensor assumes the form \((2.12) \). If the second fundamental tensor of \(M_n \) commute and \(n = 1 \), then \(M_n \) is conformally flat.

Proof:

Let \(*R_{abcd} \) assume the form \((2.12) \) and the second fundamental tensors of \(M_n \) commute i.e. \(T_{xyij} \) vanishes, then the equation \((2.9) \) in the view of equations \((1.11) \) and \((2.1) \) reduces to the form

(2.13) \(M_{xyij} = f_{xj} p_{bc} B_{bc}^{xy} f_{ij} + f_{yj} p_{bc} B_{bc}^{xy} f_{ij} - f_{xj} p_{bc} B_{bc}^{xy} f_{ij} \)

Contracting equation \((2.13) \) with \(f_i^j f_w^j \) and making use of equations \((1.14), (1.16), (2.1), (2.2), (2.3) \) and \((2.6) \), we obtain

(2.14) \(M_{xyzw} = g_{s w} p_{bc} B_{bc}^{xy} g_{xy} p_{bc} B_{bc}^{xy} - g_{s w} p_{bc} B_{bc}^{xy} - f_{xj} p_{bc} B_{bc}^{xy} g_{xy} \)

Contracting the equation \((2.14) \) with \(g_{xy} g_{zw} \) and using the equation \(B_{bc}^{xy} = B_{bc}^{xy} g_{xy} \), we get

(2.15) \(M_{xy} = (n - 1) g_{s w} p_{bc} B_{bc}^{xy} \)

If \(n = 1 \) then we obtain

(2.16) \(M_{xy} = 0 \).

This establishes the validity of the theorem.

Theorem 2.2:

Let \(M_n \) be a totally real subspace of a Kaehlerian space \(M_{2m} \) with special semi-symmetric F-connection whose curvature tensor assumes the form \((2.12) \). If the second fundamental tensor of \(M_n \) commute, then \(M_n \) is M-Einstein.

Proof:

Contracting the equation \((2.15) \) with \(g_{xy} \), we get

(2.17) \(M = m (n - 1) p_{bc} B_{bc}^{xy} \)

From equations \((2.15) \) and \((2.17) \), we get

(2.18) \(M_{xy} = (1/n) M g_{xy} \).
This establishes the validity of the theorem.

Theorem 3.3:

For M_4 be a totally real subspace of a Kaehlerian space M_{2m} with special semi-symmetric F-connection whose curvature tensor assumes the form (2.12) and satisfying the condition $F_{bc}M_{xyzw} = 0$.

Proof:

Multiplying equation (2.14) by F_{bc} and using equation (1.9) then we obtain

(2.19) $F_{bc}M_{xyzw} = 0$.

REFERENCES:

Received: May, 2015