Some Inequalities for m-Convex Stochastic Process

Teodoro Lara¹, Odalis Mejia², Nelson Merentes², Maira Valera-López²*

¹Department of Physics and Mathematics, N. U. Rafael Rangel, University of Los Andes, Trujillo 3150, Venezuela; ²School of Mathematics, Faculty of Sciences, Central University of Venezuela, Caracas 1010, Venezuela

ABSTRACT

In this paper we present some Hermite-Hadamard and Fejér type inequalities as counterpart of the developed for functions. We generalize results given for m$-$convex functions in Bracamontes, Giménez, Merentes, & Vivas, 2016, Dragomir & Toader, Some inequalities for m-convex functions, 1993 and Özdemir, Avci, & Set, 2010 among them, right-hand side of Hermite-Hadamard type and Fejér type inequalities.

Keywords: Convex; m$-$convex stochastic processes; Fejér type inequality; Hermite-Hadamard type inequality; Convex analysis

Introduction

Many inequalities have been established for convex functions and one of most famous is the Hermite-Hadamard inequality, due to the rich geometrical significance and applications see Fejér (1906), Niculescu & Persson (2006).

In 1993, S. S. Dragomir and Gh. Toader Dragomir & Toader, Some inequalities for m-convex functions, 1993 demonstrated the Hermite-Hadamard inequality for functions whose absolute values of one of most famous is the Hermite-Hadamard inequality, due to the rich geometrical significance and applications see Fejér (1906), Niculescu & Persson (2006).

Some inequalities for m-convex functions were developed by M.K. Bakula et al. Bacula, Pečarić, & Ribičić, (2006). Also, in 2010 M. E. Özdemir et al. Özdemir, Avci, & Set, 2010 gave some estimates to the right-hand of Hermite-Hadamard inequality for functions whose absolute values of second derivatives raised to positive real power are m$-$convex.

On the order hand, in the same year, Bo-Yan Xi et al. introduce concepts of the m$-$convex and (α,m)-geometrically convex and establish some inequalities of Hermite-Hadamard type for these classes of functions. Xi, Bai & Qi, 2012.

Recently, S. Özcan in Özcan, 2019 introduced the concepts of m$-$convex and (α,m)-convex stochastic process, as well as some Hermite-Hadamard type inequalities for the first derivative were established.

In this paper, some Hermite-Hadamard and Fejér type inequalities of m$-$convex functions for m$-$convex presented in Dragomir, 2002, Lara, Rosales, & Sánchez, 2015 and Özdemir, Avci, & Set, 2010 are develop.

PRELIMINARIES

Let (Ω,A,P) be a probability space. A function $Y:\Omega \rightarrow \mathbb{R}$ is a random variable if it is A-measurable. A function $X:\Omega \rightarrow \mathbb{R}$, where $1 \in \mathbb{R}$ is an interval, is a stochastic process if for every $t \in \mathbb{I}$ the function $X(t)$ is a random variable.

*Correspondence to: Maira Valera-López, School of Mathematics, Faculty of Sciences, Central University of Venezuela, Caracas 1010, Venezuela, email: avalera7@gmail.com

Received: November 27, 2019; Accepted: February 11, 2020; Published: February 18, 2020

Citation: Lara T, Mejia O, Merentes N, Valera Lopez M (2020) Some inequalities for m$-$convex stochastic process. Mathematica Eterna. 10: 103. 10.35248/1314-3344.20.10.103.

Copyright ©2020 Lara T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Definition 2.1. A stochastic process X: I×Ω→R is:
1) Jensen-convex if, for every a,b ∈ I the following inequality is satisfied:
\[x\left(\frac{a+b}{2}\right) \leq \frac{x(a)+x(b)}{2} \quad (a.e.) \] (1)
2) convex if, for every a,b ∈ I, t ∈ (0,1), the following inequality is taken place:
\[x(ta+(1-t)b) \leq tx(a)+(1-t)x(b) \quad (a.e.) \] (2)
Also, we say that a stochastic process X: I×Ω→R is:
1) continuous in probability in the interval I, if for all t ∈ I we have
\[\lim_{t \to t_0} E\left[X(t)\right] = X(t_0) \]
Where P-\lim denotes the limit in probability.
2) Mean-square continuous in the interval I, if for all t ∈ I we have
\[\lim_{t \to t_0} E\left[|X(t) - X(t_0)|^2\right] = 0 \]
3) mean-square differentiable at a point t ∈ I if there is a random variable X'(t): I×Ω→R:
\[X'(t) = P-\lim_{t \to t_0} \frac{X(t) - X(t_0)}{t - t_0} \]
Note that mean-square continuity implies continuity in probability, but the converse is not true.

Example 2.2. Let X: I×Ω→R be a stochastic process with E[X(t)^2] < ∞ for all t ∈ I, a,b ∈ I, and Θk ∈ {t-(k-1),t_k} for all k=1,...,n, a random variable Y: Ω→R is called mean-square integral of the process X on [a,b], if for a normal sequence of partitions of the interval [a,b] and for all Θ_k ∈ {t-(k-1),t_k} for all k=1,...,n, we have:
\[\lim_{k \to \infty} E\left[\sum_{i=1}^{n} X(\Theta_i)(t_i - t_{i-1})\right] = 0. \]
In such case, we write
\[Y(t) = \int_{a}^{t} X(s)ds \quad (a.e.) \]
For the existence of the mean-square integral is enough to consider the mean-square continuity of the stochastic process X. Basic properties of the mean-square integral can be read in (Sobczyk, 1991).

Now, in (Özcan, 2019) was introduced the definition of m-convex stochastic process.

Definition 2.2. The mean-square stochastic process X: I×Ω→R is said to be m-convex, if for every a,b ∈ I and t ∈ [0,1], we have:
\[X(ta + mb) \leq tx(a) + mX(b) \quad (a.e.) \] (3)
Denote by S.m (c) the class of the m-convex stochastic process on I×Ω for which X(0)=0.

Remark 2.3. From the Definition 2.2. We have the following immediate results:
1. If a,b=0 then X(0)=0
2. For m=1, we recapture the concept of convex stochastic process (Nikodem, 1980) defined on I×Ω and for m=0, we get the concept of starshaped stochastic process on I×Ω. We recall that X: I×Ω→R is starshaped if
\[X(ta) \leq tx(a) \quad (a.e.) \] (4)
for all t ∈ (0,1)\[a,b\].

Due to the Remark 2.3. you have the following lemma:

Lemma 2.4. If X is in the class S.m(c), then it is starshaped.
Proof. For any a ∈ I and t ∈ (0,1], we have:
\[X(ta) = X(ta + m(1-t)0) \leq tx(a) + m(1-t)X(0) \leq tx(a) \quad (a.e.) \] (5)
Almost everywhere.

Lemma 2.5. If X is a m-convex stochastic process and S.mSnS1, then X is m-convex.
Proof. If a,b ∈ I and t ∈ (0,1], then:
\[X(ta + mb) = X(ta + m(1-t)b) \leq tx(a) + m(1-t)X(b) \]
= tx(a) + m(1-t)X(b) Almost everywhere and the lemma are proved.

MAIN RESULT
In order to prove the Hermite-Hadamard inequality for m-convex stochastic processes we establish the following results.

Theorem 3.1. Let X: I×Ω→R be a stochastic process non negative, m-convex mean-square integrable stochastic process, with m ∈ [0,1]. For every a,b ∈ I, a < b the following inequality is satisfied almost everywhere:
\[X\left(\frac{a+mb}{2}\right) \leq \frac{1}{mb-a} \int_{a}^{b} X(S)ds \leq \frac{X(a) + mx(b)}{2} \] (6)
Proof. Let us calculate the right-hand side of (6). Since X is a m-convex stochastic process, we have:
\[\int_{a}^{b} X(ta + mb)dt \leq \int_{a}^{b} tx(a)dt + \int_{a}^{b} mX(b)dt \]
= \frac{X(a) + mx(b)}{2}
Making a change of variables t = ta + mb, in the integral:
\[\int_{a}^{b} X(ta + mb)dt = \frac{1}{a - mb} \int_{a}^{b} X(S)ds \]
= \frac{1}{a - mb} \int_{a}^{b} X(S)ds, \quad (a.e.)
The right-hand side of inequality (6) is obtained.
On the other hand, to demonstrate the left side of the inequality (6), the following transformation is performed:
\[\frac{1}{mb-a} \int_{a}^{b} X(S)ds = \frac{1}{mb-a} \left[\int_{\frac{a}{mb-a}X}^{mb} X(s)ds + \int_{mb}^{\frac{b}{mb-a}X} X(s)ds \right] \quad (a.e.) \]
Making the change of variable \[s = \frac{mb + a + tmb - a}{2} \] and \[s = \frac{mb + a - tmb - a}{2} \]
Proof. By the \(m \)-convexity of the stochastic process \(X \), we have that

\[
X\left(\frac{u+v}{2}\right) \leq \frac{1}{2} X(u) + mX\left(\frac{v}{m}\right)
\]

For all \(u, v \in I \) (a.e.)

If we choose \(u=ta+(1-t)b, v=(1-t)a+tb \), we deduce:

\[
X\left(\frac{a+b}{2}\right) \leq \frac{1}{2} X(ta+(1-t)b)dt + mX\left(\frac{(1-t)a+tb}{m}\right)
\]

For all \(t \in [0,1] \), taking into account that:

\[
\int_0^1 X(ta+(1-t)b)dt = \frac{1}{b-a} X(S)ds, \text{(a.e)}
\]

Almost everywhere for all \(t \in [0,1] \).

We deduce from (8) that

\[
X\left(\frac{a+b}{2}\right) \leq \frac{1}{2} \left[\int \left(X(ta+(1-t)b)dt + mX\left(\frac{(1-t)a+tb}{m}\right)\right) \right]
\]

By the \(m \)-convexity of the stochastic process \(X \), from Definition 2.2, we have the following immediate results:

\[
\frac{1}{2} \left[X(ta+(1-t)b)dt + mX\left(\frac{(1-t)a+tb}{m}\right)\right]
\]

\[
\leq X(a) + mX\left(\frac{b}{m}\right)
\]

\[
tX(a) + mX\left(\frac{b}{m}\right) + m(1-t)X\left(\frac{a}{m}\right)
\]

\[
+ m^2 (1-t)X\left(\frac{b}{m^2}\right)
\]

Almost everywhere, for all \(t \in [0,1] \).

Integrating (9) over \(t \in [0,1] \), we deduce:

\[
\frac{1}{b-a} \int X(u) + mX\left(\frac{u}{m}\right)\right)du \leq \frac{1}{2} \left[X(a) + mX\left(\frac{b}{m}\right) + mX\left(\frac{a}{m}\right) + m^2 X\left(\frac{b}{m^2}\right)\right]
\]

Almost everywhere. By similar argument we can state:

\[
\frac{1}{b-a} \int X(u) + mX\left(\frac{u}{m}\right)\right)du \leq \frac{1}{2} \left[X(a) + mX\left(\frac{b}{m}\right) + mX\left(\frac{a}{m}\right) + m^2 X\left(\frac{b}{m^2}\right)\right]
\]

And the proof is completed.

In order to prove the following inequalities, we need lemma bellow, demonstrated in (Barraez, Gonzalez, Merentes, & Motros, 2015).

Theorem 3.3. Let \(X: I \times \Omega \rightarrow \mathbb{R} \) be a mean-square stochastic process on \(I \), \(a,b \in I \) with \(a \leq b \) and \(I=[0,\infty) \). If \(X \) is \(m \)-convex stochastic process \(m \in (0,1) \), then one has the inequality:

\[
X\left(\frac{a+b}{2}\right) \leq \frac{1}{2} \int \left(X(ta+(1-t)b)dt + mX\left(\frac{(1-t)a+tb}{m}\right)\right)
\]

Theorem 3.2. Let \(X: I \times \Omega \rightarrow \mathbb{R} \) be a mean-square stochastic process on \(I \), \(a,b \in I \) with \(a \leq b \) and \(I=[0,\infty) \). If \(X \) is \(m \)-convex stochastic process \(m \in (0,1) \), then one has the inequality:

\[
X\left(\frac{a+b}{2}\right) \leq \frac{1}{2} \int \left(X(ta+(1-t)b)dt + mX\left(\frac{(1-t)a+tb}{m}\right)\right)
\]
Lemma 3.4. Let \(X: I × \Omega \rightarrow \mathbb{R} \) be a stochastic process mean-square differentiable on \(I, a,b\in I \) with \(a< b \). If \(X(t) \) is mean-square integrable on \([a,b] \), then the following equality holds almost everywhere:

\[
\frac{X(a)+X(b)}{2} - \frac{1}{b-a} \int_a^b X(t) dt = \frac{b-a}{2} \left(\int_0^1 (t-1)X'(ta+(1-t)b) dt \right)
\]

Theorem 3.5. Let \(X: I × \Omega \rightarrow \mathbb{R} \) be a stochastic process mean-square differentiable on \(I, a,b\in I \) with \(a< b \). If \(X(t) \) is a \(m \)-convex stochastic process, then the following inequality holds almost everywhere:

\[
\left(\frac{X(a)+X(b)}{2} - \frac{1}{b-a} \int_a^b X(t) dt \right)^{q} \leq \frac{(b-a)^2}{2} \left(\int_0^1 (t-1)X'(ta+(1-t)b) dt \right)^2
\]

Proof. First suppose that \(q=1 \). From Lemma 3.4. we have:

\[
\frac{X(a)+X(b)}{2} - \frac{1}{b-a} \int_a^b X(t) dt \leq \frac{(b-a)^2}{2} \left(\int_0^1 (t-1)X'(ta+(1-t)b) dt \right)
\]

Since \(|X| \) is \(m \)-convex stochastic process we know that for any \(t \in [0,1] \):

\[
\int (t-1)X'(ta+(1-t)b) dt \leq t \left[X(a) + m(1-t) \right] \left(\int \left(\frac{b}{m} \right) dt \right)
\]

Therefore,

\[
\int \left(\frac{b}{m} \right) dt \leq \frac{(b-a)^2}{2} \left(\int_0^1 \left[X(a) + m(1-t) \right] \left(\frac{b}{m} \right) dt \right)
\]

\[
= \frac{(b-a)^2}{2} \left[\left(\frac{b}{m} \right) \int_0^1 \left[X(a) + m(1-t) \right] \left(\frac{b}{m} \right) dt \right]
\]

\[
= \frac{(b-a)^2}{12} \left[\left(\frac{b}{m} \right) \int_0^1 \left[X(a) + m(1-t) \right] \left(\frac{b}{m} \right) dt \right]
\]

Almost everywhere, which complete the proof for this case.

Suppose now that \(q > 1 \). Using Lemma 3.4. and the Hölder’s inequality for \(q=p=q/(q-1) \), we obtain:

\[
\left[\int (t-1)X'(ta+(1-t)b) dt \right]^{q} \leq \frac{(b-a)^2}{2} \left[\int_0^1 (t-1)X'(ta+(1-t)b) dt \right]^{2q/(q-1)}
\]

Hence, from (10) and (11) we obtain:

\[
\left(\frac{X(a)+X(b)}{2} - \frac{1}{b-a} \int_a^b X(t) dt \right)^{q} \leq \frac{(b-a)^2}{2} \left(\int_0^1 (t-1)X'(ta+(1-t)b) dt \right)^2
\]

Remark 3.6. If in Theorem 3.5 we choose \(m=1 \) and if \(\mathbb{X}(t_{-}) \leq K \), which complete the proof.

Theorem 3.7. Let \(X: I × \Omega \rightarrow \mathbb{R} \) be a stochastic process mean-square differentiable on \(I, a,b\in I \) with \(a< b \). If \(|X|^{p} \) is a \(m \)-convex stochastic process for some fixed \(q>1 \) and \(m \in (0,1] \), then the following inequality holds:

\[
\left(\frac{X(a)+X(b)}{2} - \frac{1}{b-a} \int_a^b X(t) dt \right)^{q} \leq \frac{(b-a)^2}{2} \left(\int_0^1 \left[X(a) + m(1-t) \right] \left(\frac{b}{m} \right) dt \right)^{2q/(q-1)}
\]

Almost everywhere, where \(p=q/(q-1) \).

Proof. From Lemma 3.4. and using the well-know Hölder’s inequality we have successively almost everywhere:

\[
\left(\frac{X(a)+X(b)}{2} - \frac{1}{b-a} \int_a^b X(t) dt \right)^{q} \leq \frac{b-a^2}{2} \left[\int_0^1 (t-1)X'(ta+(1-t)b) dt \right]
\]

\[
+ \frac{m}{2} \left[\int_0^1 \left(\frac{b}{m} \right) dt \right]^{q} \leq \frac{(b-a)^2}{2} \left[\int_0^1 \left[X(a) + m(1-t) \right] \left(\frac{b}{m} \right) dt \right]^{2q/(q-1)}
\]

Almost everywhere, where \(1/p+1/q=1 \). We note that, the Beta and Gamma function

\[
\beta(x,y) = \frac{1}{\Gamma(x)\Gamma(y)} \int_0^1 t^{x-1}(1-t)^{y-1} dt, \; x,y>0,
\]

\[
r(x) = \frac{1}{\Gamma(x)} \int_0^\infty t^{x-1}e^{-t} dt, x\geq 0,
\]
And used to evaluate the integral
\[
\int_0^1 (t - i)^r dt = \int_0^1 (t - 1)^y dt = \beta(p+1,p+1),
\]
Where
\[
\beta(p+1,p+1) = 2^{3(p-1)} \left(\frac{1}{2} \right)^r \left(\frac{p+1}{r+1} \right)^2.
\]
and \(\Gamma(1/2) = \sqrt{\pi}\), which completes the proof.

Corollary 3.8. With the above assumptions given that \(|X^*(t,\cdot)| < K on [a,b]\) and \(0 < s \leq 1\), we have the inequality almost everywhere:
\[
\frac{X(a) + X(b)}{2} \leq - \frac{1}{b-a} \int X(t) dt \leq \min \{k, k_2\}, (a.e)
\]
Where
\[
k_i = \frac{(b-a)^2}{12} \left[\left(\frac{1}{2} \right)^r \left(\frac{1}{2} \right)^r \right]^{\frac{1}{q}}, (a.e)
\]
and
\[
k_2 = \frac{(b-a)^2}{8} \left[\left(\frac{1}{2} \right)^r \left(\frac{1}{2} \right)^r \right]^{\frac{1}{q}}, (a.e)
\]

Theorem 3.10. With the assumptions of Theorem 3.7 we have the following inequality almost everywhere:
\[
\frac{X(a) + X(b)}{2} - \frac{1}{b-a} \int X(t) dt \leq \frac{1}{2} \left(\frac{1}{2} \right)^r \left(\frac{1}{2} \right)^r \int (1-t)^{q\gamma} dt\left(1 \right) + m(1+q) \int \left(\frac{b}{m} \right)^{q\gamma} dt\right)^{\frac{1}{q}}, (a.e)
\]
Almost everywhere. Since, \(\lim_{r \to 1} \left(\frac{1}{2} \right)^r = 1\) and \(\lim_{r \to 1} \left(\frac{1}{2} \right)^r = \frac{1}{2}\). We have,
\[
\left(\frac{1}{2} \right)^r \left(\frac{1}{2} \right)^r < 1, q \in (1,\infty).
\]
Hence, for \(q\in(1,\infty)\),
\[
\frac{X(a) + X(b)}{2} - \frac{1}{b-a} \int X(t) dt \leq \frac{1}{2} \left(\frac{1}{2} \right)^r \left(\frac{1}{2} \right)^r \int (1-t)^{q\gamma} dt\left(1 \right) + m(1+q) \int \left(\frac{b}{m} \right)^{q\gamma} dt\right)^{\frac{1}{q}},
\]
almost everywhere.

Theorem 3.11. Let \(X: \Omega \to \mathbb{R}\) be a stochastic process mean-square differentiable on \(I\), a, b \(\in \mathbb{R}\) with \(a < b\). If \(|X'|^{q}\) is a \(m\)-convex stochastic process for some fixed \(q > 1\) and \(m \in (0,1]\), then the following inequality holds:
\[
\frac{X(a) + X(b)}{2} - \frac{1}{b-a} \int X(t) dt \leq \frac{1}{2} \left(\frac{1}{2} \right)^r \left(\frac{1}{2} \right)^r \int (1-t)^{q\gamma} dt\left(1 \right) + m(1+q) \int \left(\frac{b}{m} \right)^{q\gamma} dt\right)^{\frac{1}{q}},
\]
almost everywhere.

Proof. From Lemma 3.4. and the well-known power-mean inequality, we obtain:
\[
\frac{X(a) + X(b)}{2} - \frac{1}{b-a} \int X(t) dt \leq \frac{1}{2} \left(\frac{1}{2} \right)^r \left(\frac{1}{2} \right)^r \int (1-t)^{q\gamma} dt\left(1 \right) + m(1+q) \int \left(\frac{b}{m} \right)^{q\gamma} dt\right)^{\frac{1}{q}}
\]
Almost everywhere. Since, \(\lim_{r \to 1} \left(\frac{1}{2} \right)^r = 1\) and \(\lim_{r \to 1} \left(\frac{1}{2} \right)^r = \frac{1}{2}\),
\[
\frac{X(a) + X(b)}{2} - \frac{1}{b-a} \int X(t) dt \leq \min \{E_i, E_{i+1}\}, (a.e)
\]
With completes the proof.

Remark 3.12. From Theorem 3.7. – 3.11., we have:
\[
\frac{X(a) + X(b)}{2} - \frac{1}{b-a} \int X(t) dt \leq \frac{2}{(q+1)(q+2)\gamma} \left(\frac{1}{2} \right)^r \left(\frac{1}{2} \right)^r \int (1-t)^{q\gamma} dt\left(1 \right) + m(1+q) \int \left(\frac{b}{m} \right)^{q\gamma} dt\right)^{\frac{1}{q}}
\]
Almost everywhere.

Since \(\left(\frac{2}{(q+1)(q+2)\gamma} \right)^{\frac{1}{q}} \leq 1\), \(q \in [1,\infty)\) we obtain
\[
\frac{X(a) + X(b)}{2} - \frac{1}{b-a} \int X(t) dt \leq \min \{E_i, E_{i+1}\}, (a.e)
\]
With completes the proof.
In Fejér, 1906, L. Fejér gives a generalization of (6). Now, we shall present the definition of Fejér inequality for convex stochastic processes.

Theorem 3.13. Let \(X: I \times \Omega \rightarrow \mathbb{R} \) be a non-negative convex mean-square integrable stochastic process. For every \(a < b \) with \(a < b \), the following inequality is satisfied almost everywhere:

\[
X\left(\frac{a+b}{2}\right)Y(t)dt \leq \frac{1}{b-a}\int_a^b X(t)Y(t)dt
\]

(12)

Where \(Y: \Omega \rightarrow (0, \infty) \) is a non-negative mean-square integrable stochastic process, symmetric with respect to \((a+b)/2\) that is, \(Y(a+b-t, v) = Y(t, v) \).

The following establishes some results that represent the counterpart of the results presented by M. Bracamontes et al. in (Bracamontes, Giménez, Merentes, & Vivas, 2016) for m-convex stochastic processes:

Theorem 3.14. Let \(X: [0, \infty) \times \Omega \rightarrow R \) be a m-convex mean-square integrable stochastic process with \(m \in [0,1] \). For every \(a, b \in \mathbb{R} \) with \(a < b \), and \(Y: [a, b] \times \Omega \rightarrow \mathbb{R} \) is a non-negative mean-square integrable stochastic process, symmetric with respect to \((a+b)/2\), then the following inequality is satisfied almost everywhere:

\[
X\left(a\right)X\left(b\right) \geq \frac{1}{b-a}\int_a^b X(t)Y(t)dt
\]

(13)

Proof. Since \(Y \) is a non-negative mean-square integrable stochastic processes on \([a, b] \times \Omega \) and symmetric with respect to \((a+b)/2\), then the following inequality is satisfied almost everywhere:

\[
\frac{1}{b-a}\int_a^b X(t)Y(t)dt \leq \frac{X(a) + X(b)}{2}\int_a^b \frac{b-t}{b-a} Y(t)dt
\]

Almost everywhere. Hence, the m-convexity of \(X \) implies:

\[
\frac{1}{b-a}\int_a^b X(t)Y(t)dt \leq \frac{X(a) + X(b)}{2}\int_a^b \frac{b-t}{b-a} Y(t)dt + \frac{m}{2}\int_a^b \frac{t-a}{b-a} Y(t)dt
\]

Which proves the result.

Remark 3.15. Notice that if we make \(m=1 \) in (13) we get the right-hand side of inequality (12) that is:

\[
\frac{b}{a}\int_a^b X(t)Y(t)dt \leq \frac{X(a) + X(b)}{2}\int_a^b Y(t)dt
\]

In the following, a bound is obtained for the right-hand side of inequality (12) for m-convex stochastic processes.

Theorem 3.16. Let \(X: [0, \infty) \times \Omega \rightarrow \mathbb{R} \) be a m-convex mean-square integrable stochastic process in \([a, b] \times \Omega \) with \(m \in (0,1) \). For every \(b \in (0, \infty) \) \(s \in (0, a) \), and \(X: [a, b] \times \Omega \rightarrow \mathbb{R} \) is a non-negative mean-square integrable stochastic process, symmetric with respect to \((a+b)/2\), then the following inequality is satisfied almost everywhere:

\[
X\left(\alpha X(a) + \beta X(b)\right) \geq \frac{a+b}{2}\int_a^b X\left(\frac{t}{m}\right)Y(t)dt
\]

where \(\alpha, \beta \) are real numbers with \(\alpha, \beta > 0 \) and \(\alpha + \beta = 1 \).

Proof. The m-convexity of the stochastic process \(X \) implies that

\[
X\left(\alpha X(a) + \beta X(b)\right) \geq \frac{a+b}{2}\int_a^b X\left(\frac{t}{m}\right)Y(t)dt
\]

Almost everywhere. Now, \(X \) is symmetrical then:

\[
= \frac{1}{2}\int_a^b X\left(\alpha + \beta - t\right)Y(t)dt + \frac{m}{2}\int_a^b X\left(\frac{t}{m}\right)Y(t)dt
\]

Which proves the result.

Remark 3.17. If \(m=1 \) in Theorem 3.16 we obtain:

\[
X\left(\alpha X(a) + \beta X(b)\right) \geq \frac{1}{2}\int_a^b X\left(\frac{t}{m}\right)Y(t)dt
\]

Which is the left-hand side of (12).

Now, we present a generalization of (12). First, we prove the following result:

Lemma 3.18. Let \(X: [0, \infty) \times \Omega \rightarrow \mathbb{R} \) be a m-convex mean-square integrable stochastic process with \(m \in (0,1) \). For every \(\alpha, \beta \in (0, \infty) \), there is \(\alpha\neq \beta \) such that the following inequality holds almost everywhere:

\[
X\left(\alpha X(a) + \beta X(b)\right) \geq \frac{a+b}{2}\int_a^b X\left(\frac{t}{m}\right)Y(t)dt
\]

Proof. Since \(X \) can be written as \(\alpha X(a) + \beta X(b) \), for some \(\alpha\in[0,1] \) and \(\alpha+b=X(1-a) \), then we have:

\[
X\left(\alpha X(a) + \beta X(b)\right) = \frac{1}{2}\int_a^b X\left(\frac{t}{m}\right)Y(t)dt
\]

Almost everywhere. Hence, the m-convexity of \(X \) implies:

\[
\frac{1}{2}\int_a^b X\left(\frac{t}{m}\right)Y(t)dt \leq \frac{X(a) + X(b)}{2}\int_a^b \frac{b-t}{b-a} Y(t)dt
\]

(14)
Almost everywhere.

Theorem 3.19. Under the same hypotheses of Theorem 3.14, the following inequality holds almost everywhere:

\[
\int_a^b X(t)Y(t)\,dt \leq \left(\frac{m}{2} \left[X\left(\frac{a}{m} \right) + X\left(\frac{b}{m} \right) \right] + \frac{X(a) + X(b)}{2} \right) \int_a^b Y(t)\,dt
\]

Proof. By the symmetry of Y with respect to \((a+b)/2\) and Lemma 3.18:

\[
\int_a^b X(t)Y(t)\,dt = \int_a^b X(a+b-t)Y(a+b-t)\,dt + \int_a^b X(t)Y(t)\,dt
\]

\[
= \int_a^b \left(\frac{1}{2} X(a+b-t)Y(t) + \frac{1}{2} X(t)Y(t) \right)\,dt
\]

\[
= \frac{1}{2} \int_a^b \left[m(1-a) \left(X\left(\frac{a}{m} \right) + X\left(\frac{b}{m} \right) \right) + a \left(X(a) + X(b) \right) - X(t) \right] Y(t)\,dt
\]

\[
\leq \left(\frac{m}{2} \left[X\left(\frac{a}{m} \right) + X\left(\frac{b}{m} \right) \right] + \frac{X(a) + X(b)}{2} \right) \int_a^b Y(t)\,dt
\]

Almost everywhere.

Remark 3.20. Notice that if \(m=1\) in Theorem 3.19, we indeed get:

\[
\int_a^b X(t)Y(t)\,dt \leq \left(X(a) + X(b) \right) \int_a^b Y(t)\,dt, (a.e)
\]

REFERENCES

