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Abstract
Discrete Jensen inequality for strongly midconvex stotbgsrocesses
and integral Jensen inequality for strongly convex staibhasocesses are
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1 Introduction

In 1966 B.T. Polyak introduced the notion of strongly confiexctions. Such func-
tions play an important role in optimization theory and neatfatical economies
(see, for instance]], [9], and the references therein). In 1980 K. Nikodem investi-
gated properties of convex stochastic procesges fter, A. Skowronski described
the properties of Jensen-convex stochastic processédllin [Next, the Hermite-
Hadamard inequality for convex and strongly stochasticg@sees was proved in
[2] and [3]. In this article we will present some counterparts of Jaressd Fejer in-
equalities and we will show the converse theorem to Heridadamard’s theorem.

Let (2, A, P) be an arbitrary probability space. A functiéh: 2 — Ris called
arandom variableif it is .A-measurable. A functioX : I x Q — R is called a
stochastic procesd for everyt € I the functionX (¢, -) is a random variable.

LetC : Q2 — R be a positive random variable. Recall, that a stochasticga®
X : I x Q — Ris strongly convex with modulus(-), if

X(Au+ (1=A)v,-) <
AX(u, )+ (1= N)X(v,) = COML =N (u—20)* (a.e) (1)
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forall A € [0,1] andu,v € 1.

We say, that a stochastic processimngly Jensen—convex (or strongly mid-
convex) with modulué€’(-), if the inequality () is assumed only fok = % and all
u,v € 1,1.e.

1 c()

,)g%xmg+ixw,ynz—w—vf (@e) )

u—+v
2

X(

Obviously, by omitting the tern@'(-)A\(1 — \)(u — v)? in inequality (), and the
term %(u —v)? in inequality @), we immediately get the definition of a convex,
or Jensen—convex stochastic processes introduced by Kdbik in [7], and A.
Skowraski in [10], respectively.

2 Jensen inequalities

In this section, we present counterparts of Jensen—typpiatigies for strongly
Jensen—convex stochastic processes and a counterparimitral Jensen inequal-
ity for strongly convex stochastic processes. Let us raeailtechnical lemmas.
The first one is a special case of Lemma 2 proved]ndnd the second one was
proved in [7]. The proof of the second lemma in deterministic case cambed in
[4].

Lemma 2.1. A stochastic procesX : [ x 2 — R is strongly Jensen—convex
with modulusC'(-) if and only if the stochastic proce3s: I x 2 — R defined by
Y(t,-) = X(¢t,-) — C(-)t* is Jensen—convex.

Lemma 2.2. Let I be an open interval. IX : I x Q — R is a Jensen—convex
stochastic process, then for alle N and for allt,, ..., t,, € I holds

x(- >t )< %;‘X(ti, ) (ae) (3)

Now, we present a Jensen—type inequality for strongly Jertsvex stochastic
processes.

Theorem 2.3.Let I be an open interval. IX : I x Q@ — R is a strongly
Jensen—convex with moduld¥-) stochastic process, then for alke N and for all
ti,...,t, € I, we have

X(%iti,-) < %im, )OS (-5 @e @

=1 =1
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Proof. Fixn € N andtq, ...,t, € I. SinceX is a strongly Jensen—convex stochas-
tic process with modulu€’(-), then by Lemma2.1 there exists a Jensen—convex
stochastic process : I x Q — R, such thatX(¢,) = Y(¢,-) + C(-)t* (a.e.).
Process” satisfies the inequalityg]. It means

Y<%iti,~> < %iY(ti,-) (a.e)

Substituting in the above inequalities, the expressioh-) = X (¢,-)—C(-)t* (a.e.),
we have

X(330) 00 Xn) < 23 (i -com)] @e
therefore
M3 <t (5] s

v~

=A

To simplify the notation, we transform only the expression We put alsos :=
1 Z” t.
n i=1"

Ay () e e = e

i=1 i=1 =1 i=1

% [(tl—s) +2(tz—s)s+( )2} — (3)2 =

=1

CERRE SR

S|

3

3

1

=

Finally

X(%Zti,)g%i){(u,.)_%)z( % tz> (a.e.)

=1 i=1 i=1 =1

O

Now, we extend the above theorem to convex combination witlrary ratio-
nal coefficients.
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Theorem 2.4.Let I be an open interval. K : I x Q — R is a strongly Jensen—
convex with modulug’(-) stochastic process, then the following inequality holds

n

X(i qits, ) < i ¢ X (i) —C(v) Z i <ti - i %U)Q (a.e.)

=1
forallty,...,t, € I andq,...,q, € QN (0,1), such that, +---+ ¢, = 1.

Proof. Fix ty,...,t, € [ andg = &, ..,q, = ¥ € QN (0,1) such thay, + - - +

H7

¢» = 1. Without loss of generality we may assume that --- = [, = [. Then
kfl—l——l—k’n =[. We putu;; = -+ = Uk, =: t1, Uy = -+ = Uk, =: t9, v
Upl = -+ ° = Upg, =: L, then

n n ki
Zqiti = % Z ZUU
i=1

i=1 j=1

By Theorem2.3 we get

n n ki
1 7
X(Z%tz‘, ) = X(j S uy, ) <
i=1 i=1 j=1
1 7 C(‘) 7 1 7 2
7 Xy ) = == (=7 u) =
=1 j=1 =1 j5=1 =1 j=1
> @ X(ti) - C() %(tz‘ —Zqztz) (a.e)

By the above theorem, we obtain the following corollary.

Corollary 2.5. Let I be an open interval. A stochastic procéss I x 2 —+ R
is strongly Jensen—convex with modulus ) if and only if

X(qu+ (1= q,) <gX(u,)+ (1 =) X(v,) — C(la(1 - q)(u—v)" (ae)
for everyu,v € I andg € QN (0, 1).

Now, we prove a counterpart of the integral Jensen inegualitstrongly con-
vex stochastic processes.

Let ([a,b], A, ) be a probability measure space, whéteh] C R, A is the
sigma algebra of Lebesgue measurable gets, ﬁA is a probability measure (
1([a,b]) = 1). We denote by the Lebesgue measure.
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Theorem 2.6.Let X : I x Q@ — R be a strongly convex with modulus(-)
stochastic process; : [a,b] — I be a square integrable function according to the
measureg:. Then

b b
X(m) < [ X (el )dn =) [ (o0 —m)du (@ae)

wherem = f;’ o(t)du.

Proof. SinceX is strongly convex, then it is convex too. By Corollary 3 pedvn
[3], there exists a stochastic procés§; -) = C(-)(t —to)?+ A(-)(t —to) + X (to, -)
supportingX in ¢, € int . It means, for every, € int I, the following inequality
holds

X(p(t),) 2 CONep(t) —to)* + AL)(p(t) —to) + X(to,1) (ae)  (5)

where A : 2 — R is a random variable. By the mean—value theonem=
f;’ o(t)du € I. We take the inequalitys) for m and we get

X(e(t),) = C)e(t) —m)* + AC)(e(t) —m) + X(m,) (ae)

Integrating the above inequality according to the meagyvee get
/ X (p(0), Y >
ct) [ (olt) — m)du + A() / (1) — m)dys + X (m, ) / =
00 [ (et = mpan+ A0 [ oo —m [ ] + X0 ) [ =
00) [ Got0) = mPaa+ AC) [~ (i 5)] + X(on (ot e
By the probability of the measuye we have
[ 502 0 [t - mpc X(m) (@)

which completes the proof. O

3 Fejer and Hermite—Hadamard inequalities

In this section, we present counterparts of well known FaperHermite—Hadamard
inequalities for strongly convex stochastic processesdefierministic case these
facts were described ii] and [6].
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Let us recall before that a stochastic proc&ss I x @ — R is mean-square
continuousn the intervalfa, b], if for all ¢, € I the condition

lim E(]X(t) — X(to)[*) = 0

t—to
holds. In this section, we use the notiomeéan—square integrafFor the definition
and basic properties of mean-square integral see for exafhf]l We start our

investigation with the following technical lemma. It can béasily prove by basic
mean-—square integral properties, so we omit the proof.

Lemma 3.1.Let G : I x 2 — R, be a mean-square integrable stochastic
process, such thét(a + b —t) = G(t) (a.e.)forallt € [a,b] C I, and

/bG(t, Nit=J() (ae)

whereJ : 2 = R s a unit random variable. Then

/th(t, St = “;bJ(-) @e) (6)

The following theorem is a counterpart of Fejer inequaldy $trongly convex
stochastic processes.

Theorem 3.2.Let X : [a,b] x © — R be a strongly convex with modulys(-),
mean-square continuous [ b] stochastic process. Lét : [a,b] x Q@ — R, be a
mean—square integrab&ochastic process, such tidta+bv—t,-) = G(t,-) (a.e.)
forall t € [a,b], and

/bG(t, Vit = J() (ae)

whereJ : (2 — R is a unit random variable. The following inequality holds

X(a;rb,-)+C(-)[/abt2G(t,-)dt a+b /X
X(a,');—X(b,')_C(')[a —21—62_/abt2G(t7.)dt} (@e) (7

Proof. To prove the left-hand side of), we takes = “T“’ and a process of the form
H(t,") = C()(t —s)*+ A(-)(t — s) + X(s,-) supportingX in s (see Corollary 3
[3]). By the basic properties of mean—square integral, we have

[ i [ a
0(-)/a £2G(t, )t + (—2C()s + A() /ath(t,~)dt+

(0(-)32—A(-)3+X(5,-))/ Gt )it (ae)
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By Lemma3.1, basic properties of mean—square integral and the assumgdiput
G, we get

/X C()/b 2G(t,)dt — C(1)s* + X (s,-) =

X<@+b) o[ eow - (50)] @e)

To prove the right hand side of), we use inequalityl() for the following convex
combinationt = 7—a + t—“b By strongly convexity ofX and basic properties of
mean-square |ntegral We have

b b _ _
/X(t,~)G(t,~)dt:/ X<£_2Q+Z_Zb,~>G(t,~)dt<

[Tz« 1200 - 00220 e -
/b [bX(a, 2 : ZX(b, -)+X(b, 2 : f(% ')t—C(~) ((a+b)t—ab—t2)} G(t,)dt (a.e.)
Finally
/bx(t, NG(t,)dt < bX(a, 2 — ZX(b’ )y AL z)) = f(% ). ;L b
—C() (GJ;W —ab— /btzG(t, -)dt] =
) a® 4+ b? b
X(a, );X(b, ) C(.)[ ‘2”) _/a el -)dt] (a.e.)

O

Note that, if we putC(-) = 0 in (7), then we get Fejer inequality for convex
stochastic processes.

a+b /X X(a,-)+X(b,-)

5 (a.e.) (8)

Using the inequality&) for the process\ (¢, -) = t*J(-) we have

b 2 b 2 bQ
<a;“ ) g/ 2G(t, )t < 2 ;r (a.e.)

By the above inequality, the terms

b ) 2 2 b
/tzG(t,-)dt—(a;b> and ~ ;rb —/ t2G(t,-)dt
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in the inequality {) are nonnegative. In consequence, the inequaljtys(stronger
then the inequalityg). Note also, that Fejer inequality)(generalizes Hermite—
Hadamard inequality proved i8]} Indeed, forG(¢,-) = ﬁ the inequality 7), can
be written in the form

X5 et e L [ x
< Xl >;X<Uv'>_o(.>(u_6“)2 (ae) (9)

The next result shows that the converse of Hermite—Hadathaotem for strongly
convex stochastic processes, is also valid.

Theorem 3.3. Let a stochastic process : I x {2 — R be mean—square contin-
uous in the interval, and let it satisfy the left or right hand side inequality &). (
Then X is strongly convex.

Proof. First we will prove the theorem in the case when the left hade mequal-
ity of (9) holds. Let us define a stochastic procéss I x 2 — R, such that
Y(t,-) = X(t,-) — C(-)t?, whereC : Q — R is a random variable occurring if)(
Substituting the expression(t, -) = Y (¢, -)+C(-)t* to the left hand side inequality
of (9) we get

e S R

/meq+aﬁﬂm (a.e) (10)

Vv—1Uu

By the basic properties of mean—square integral we have

u—+v 4u? + duv + 4v?
v(F5) ot
5 ) TCC) 15

1

Vv—1Uu

<

(/&@qm+mq (ae) (11)

v—u 3

Subtracting by sides irL() the termC(-) “=4+* we get

Y@*ﬂ)g L /3@@@ (a.e.)

2 v —u

This means that” satisfy the left hand side inequality of the Hermite—Hadaima
inequality for convex stochastic processes. By Theoreri| @Tis convex. By
Lemma 2 B] the stochastic process is strongly convex with modulus'(-).

Now, let the right hand side of the inequality) (be satisfied. As before, we
define a stochastic proce¥s: I x Q — R, such that'(¢,-) = X (t,-) — C(-)¢?,
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whereC : 2 — Ris arandom variable occurring i) Substituting the expression
X(t,-) = Y(t,) + C(-)t* to the right hand side inequality of)we get

! / (Y(t, )+ (J(-)tQ) dt

V—Uu
: . 2 4 2 )2
< Y(u, ) +Y(v, )+C(')u +v _O(')(u v) (ae) (12)
2 2 6
By the basic properties of mean—square integral we have
1 v 1 v —ud
Y(t,-)dt .
— [ veyarcn—"
. . 2 2
< Y (u, );Y(v, ) N O(')Qu + QZU + 2v (ae) (13)
Subtracting by sides irL@) the termC(-) “=4+2° we get
! / v, yde < L) EY0) oy
v—u J, 2

ThusY satisfy the right hand side inequality of the Hermite—Hadedrinequality
for convex stochastic processes. By Theorerd]&] is convex. By Lemma 23]
the stochastic process is strongly convex with modulus'(-). O
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