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1 Introduction

In 1966 B.T. Polyak introduced the notion of strongly convexfunctions. Such func-
tions play an important role in optimization theory and mathematical economies
(see, for instance [8], [9], and the references therein). In 1980 K. Nikodem investi-
gated properties of convex stochastic processes [7]. Later, A. Skowronski described
the properties of Jensen-convex stochastic processes in [10]. Next, the Hermite-
Hadamard inequality for convex and strongly stochastic processes was proved in
[2] and [3]. In this article we will present some counterparts of Jensen and Fejer in-
equalities and we will show the converse theorem to Hermite-Hadamard’s theorem.

Let (Ω,A, P ) be an arbitrary probability space. A functionX : Ω → R is called
a random variable, if it is A-measurable. A functionX : I × Ω → R is called a
stochastic process, if for everyt ∈ I the functionX(t, ·) is a random variable.

Let C : Ω → R be a positive random variable. Recall, that a stochastic process
X : I × Ω → R is strongly convex with modulusC(·), if

X
(
λu+ (1− λ)v, ·

)
6

λX(u, ·) + (1− λ)X(v, ·)− C(·)λ(1− λ)(u− v)2 (a.e.) (1)
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for all λ ∈ [0, 1] andu, v ∈ I.
We say, that a stochastic process isstrongly Jensen–convex (or strongly mid-

convex) with modulusC(·), if the inequality (1) is assumed only forλ = 1
2

and all
u, v ∈ I, i.e.

X
(u+ v

2
, ·
)
6

1

2
X(u, ·) +

1

2
X(v, ·)−

C(·)

4
(u− v)2 (a.e.). (2)

Obviously, by omitting the termC(·)λ(1 − λ)(u − v)2 in inequality (1), and the
term C(·)

4
(u − v)2 in inequality (2), we immediately get the definition of a convex,

or Jensen–convex stochastic processes introduced by K. Nikodem in [7], and A.
Skowrónski in [10], respectively.

2 Jensen inequalities

In this section, we present counterparts of Jensen–type inequalities for strongly
Jensen–convex stochastic processes and a counterpart of the integral Jensen inequal-
ity for strongly convex stochastic processes. Let us recalltwo technical lemmas.
The first one is a special case of Lemma 2 proved in [3], and the second one was
proved in [7]. The proof of the second lemma in deterministic case can be found in
[4].

Lemma 2.1. A stochastic processX : I × Ω → R is strongly Jensen–convex
with modulusC(·) if and only if the stochastic processY : I × Ω → R defined by
Y (t, ·) := X(t, ·)− C(·)t2 is Jensen–convex.

Lemma 2.2. Let I be an open interval. IfX : I × Ω → R is a Jensen–convex
stochastic process, then for alln ∈ N and for allt1, ..., tn ∈ I holds

X
(1

n

n∑

i=1

ti, ·
)

6
1

n

n∑

i=1

X(ti, ·) (a.e.). (3)

Now, we present a Jensen–type inequality for strongly Jensen–convex stochastic
processes.

Theorem 2.3. Let I be an open interval. IfX : I × Ω → R is a strongly
Jensen–convex with modulusC(·) stochastic process, then for alln ∈ N and for all
t1, ..., tn ∈ I, we have

X
(1

n

n∑

i=1

ti, ·
)

6
1

n

n∑

i=1

X(ti, ·)−
C(·)

n

n∑

i=1

(

ti −
1

n

n∑

i=1

ti

)2

(a.e.). (4)
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Proof. Fix n ∈ N andt1, ..., tn ∈ I. SinceX is a strongly Jensen–convex stochas-
tic process with modulusC(·), then by Lemma2.1 there exists a Jensen–convex
stochastic processY : I × Ω → R, such thatX(t, ·) = Y (t, ·) + C(·)t2 (a.e.).
ProcessY satisfies the inequality (3). It means

Y
(1

n

n∑

i=1

ti, ·
)

6
1

n

n∑

i=1

Y (ti, ·) (a.e.).

Substituting in the above inequalities, the expressionY (t, ·) = X(t, ·)−C(·)t2 (a.e.),
we have

X
(1

n

n∑

i=1

ti, ·
)

− C(·)
(1

n

n∑

i=1

ti

)2

6
1

n

[ n∑

i=1

{
X(ti, ·)− C(·)t2i

}]

(a.e.),

therefore

X
(1

n

n∑

i=1

ti, ·
)

6
1

n

n∑

i=1

X(ti, ·)− C(·)
[1

n

n∑

i=1

t2i −
(1

n

n∑

i=1

ti

)2]

︸ ︷︷ ︸

=A

(a.e.).

To simplify the notation, we transform only the expressionA. We put alsos :=
1
n

∑n

i=1 ti.

A =
1

n

n∑

i=1

t2i −
(1

n

n∑

i=1

ti

)2

=
1

n

n∑

i=1

t2i −
(
s
)2

=
1

n

n∑

i=1

(
ti − s+ s

)2
−

(
s
)2

=

1

n

n∑

i=1

[(
ti − s

)2
+ 2

(
ti − s

)
s+

(
s
)2
]

−
(
s
)2

=

1

n

n∑

i=1

(
ti − s

)2
+ 2

1

n
s
[ n∑

i=1

(

ti − s
)]

+
1

n

n∑

i=1

(
s
)2

−
(
s
)2

=

1

n

n∑

i=1

(
ti − s

)2
+ 2

1

n
s
[ n∑

i=1

ti − ns

︸ ︷︷ ︸

=0

]

+
1

n
n
(
s
)2

−
(
s
)2

︸ ︷︷ ︸

=0

=
1

n

n∑

i=1

(
ti − s

)2
.

Finally

X
(1

n

n∑

i=1

ti, ·
)

6
1

n

n∑

i=1

X(ti, ·)−
C(·)

n

n∑

i=1

(

ti −
1

n

n∑

i=1

ti

)2

(a.e.).

Now, we extend the above theorem to convex combination with arbitrary ratio-
nal coefficients.
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Theorem 2.4.Let I be an open interval. IfX : I ×Ω → R is a strongly Jensen–
convex with modulusC(·) stochastic process, then the following inequality holds

X
( n∑

i=1

qiti, ·
)

6

n∑

i=1

qiX(ti, ·)− C(·)

n∑

i=1

qi

(

ti −

n∑

i=1

qiti

)2

(a.e.),

for all t1, ..., tn ∈ I andq1, ..., qn ∈ Q ∩ (0, 1), such thatq1 + · · ·+ qn = 1.

Proof. Fix t1, ..., tn ∈ I andq1 = k1
l1
, ..., qn = kn

ln
∈ Q ∩ (0, 1) such thatq1 + · · ·+

qn = 1. Without loss of generality we may assume thatl1 = · · · = ln = l. Then
k1 + · · · + kn = l. We putu11 = · · · = u1k1 =: t1, u21 = · · · = u2k2 =: t2, ... ,
un1 = · · · = unkn =: tn, then

n∑

i=1

qiti =
1

l

n∑

i=1

ki∑

j=1

uij.

By Theorem2.3, we get

X
( n∑

i=1

qiti, ·
)

= X
(1

l

n∑

i=1

ki∑

j=1

uij, ·
)

6

1

l

n∑

i=1

ki∑

j=1

X(uij, ·)−
C(·)

l

n∑

i=1

ki∑

j=1

(

uij −
1

l

n∑

i=1

ki∑

j=1

uij

)2

=

n∑

i=1

qiX(ti, ·)− C(·)

n∑

i=1

qi

(

ti −

n∑

i=1

qiti

)2

(a.e.).

By the above theorem, we obtain the following corollary.

Corollary 2.5. Let I be an open interval. A stochastic processX : I × Ω → R

is strongly Jensen–convex with modulusC(·) if and only if

X
(
qu+ (1− q)v, ·

)
6 qX(u, ·) + (1− q)X(v, ·)− C(·)q(1− q)

(
u− v

)2
(a.e.),

for everyu, v ∈ I andq ∈ Q ∩ (0, 1).

Now, we prove a counterpart of the integral Jensen inequality for strongly con-
vex stochastic processes.

Let ([a, b],Λ, µ) be a probability measure space, where[a, b] ⊂ R, Λ is the
sigma algebra of Lebesgue measurable sets,µ = 1

b−a
λ is a probability measure (

µ
(
[a, b]

)
= 1 ). We denote byλ the Lebesgue measure.
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Theorem 2.6. Let X : I × Ω → R be a strongly convex with modulusC(·)
stochastic process,ϕ : [a, b] → I be a square integrable function according to the
measureµ. Then

X
(
m, ·

)
6

∫ b

a

X
(
ϕ(t), ·

)
dµ− C(·)

∫ b

a

(
ϕ(t)−m

)2
dµ (a.e.),

wherem =
∫ b

a
ϕ(t)dµ.

Proof. SinceX is strongly convex, then it is convex too. By Corollary 3 proved in
[3], there exists a stochastic processH(t; ·) = C(·)(t− t0)

2+A(·)(t− t0)+X(t0, ·)
supportingX in t0 ∈ int I. It means, for everyt0 ∈ int I, the following inequality
holds

X(ϕ(t), ·) > C(·)(ϕ(t)− t0)
2 + A(·)(ϕ(t)− t0) +X(t0, ·) (a.e.), (5)

whereA : Ω → R is a random variable. By the mean–value theoremm =
∫ b

a
ϕ(t)dµ ∈ I. We take the inequality (5) for m and we get

X(ϕ(t), ·) > C(·)(ϕ(t)−m)2 + A(·)(ϕ(t)−m) +X(m, ·) (a.e.).

Integrating the above inequality according to the measureµ, we get

∫ b

a

X(ϕ(t), ·)dµ >

C(·)

∫ b

a

(ϕ(t)−m)2dµ+ A(·)

∫ b

a

(ϕ(t)−m)dµ+X(m, ·)

∫ b

a

dµ =

C(·)

∫ b

a

(ϕ(t)−m)2dµ+ A(·)
[∫ b

a

ϕ(t)dµ−m

∫ b

a

dµ
]

+X(m, ·)

∫ b

a

dµ =

C(·)

∫ b

a

(ϕ(t)−m)2dµ+ A(·)
[

m−mµ
(
[a, b]

)]

+X(m, ·)µ
(
[a, b]

)
(a.e.).

By the probability of the measureµ, we have
∫ b

a

X(ϕ(t), ·)dµ > C(·)

∫ b

a

(ϕ(t)−m)2dµ+X(m, ·) (a.e.),

which completes the proof.

3 Fejer and Hermite–Hadamard inequalities

In this section, we present counterparts of well known Fejerand Hermite–Hadamard
inequalities for strongly convex stochastic processes. Indeterministic case these
facts were described in [1] and [6].
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Let us recall before that a stochastic processX : I × Ω → R is mean-square
continuousin the interval[a, b], if for all t0 ∈ I the condition

lim
t→t0

E(|X(t)−X(t0)|
2) = 0

holds. In this section, we use the notion ofmean–square integral. For the definition
and basic properties of mean-square integral see for example [11]. We start our
investigation with the following technical lemma. It can beeasily prove by basic
mean–square integral properties, so we omit the proof.

Lemma 3.1. Let G : I × Ω → R+ be a mean–square integrable stochastic
process, such thatG(a+ b− t) = G(t) (a.e.) for allt ∈ [a, b] ⊂ I, and

∫ b

a

G(t, ·)dt = J(·) (a.e.),

whereJ : Ω → R is a unit random variable. Then
∫ b

a

tG(t, ·)dt =
a+ b

2
J(·) (a.e.). (6)

The following theorem is a counterpart of Fejer inequality for strongly convex
stochastic processes.

Theorem 3.2. Let X : [a, b]× Ω → R be a strongly convex with modulusC(·),
mean-square continuous in[a, b] stochastic process. LetG : [a, b] × Ω → R+ be a
mean–square integrablestochastic process, such thatG(a+b−t, ·) = G(t, ·) (a.e.)
for all t ∈ [a, b], and

∫ b

a

G(t, ·)dt = J(·) (a.e.),

whereJ : Ω → R is a unit random variable. The following inequality holds

X(
a+ b

2
, ·) + C(·)

[∫ b

a

t2G(t, ·)dt−
(a+ b

2

)2]

6

∫ b

a

X(t, ·)G(t, ·)dt 6

X(a, ·) +X(b, ·)

2
− C(·)

[a2 + b2

2
−

∫ b

a

t2G(t, ·)dt
]

(a.e.). (7)

Proof. To prove the left-hand side of (7), we takes = a+b
2

and a process of the form
H(t, ·) = C(·)(t− s)2 + A(·)(t− s) +X(s, ·) supportingX in s (see Corollary 3
[3]). By the basic properties of mean–square integral, we have

∫ b

a

X(t, ·)G(t, ·)dt >

∫ b

a

H(t, ·)G(t, ·)dt =

C(·)

∫ b

a

t2G(t, ·)dt+
(
−2C(·)s+ A(·)

)
∫ b

a

tG(t, ·)dt+

(
C(·)s2 − A(·)s+X(s, ·)

)
∫ b

a

G(t, ·)dt (a.e.).
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By Lemma3.1, basic properties of mean–square integral and the assumption about
G, we get

∫ b

a

X(t, ·)G(t, ·)dt > C(·)

∫ b

a

t2G(t, ·)dt− C(·)s2 +X(s, ·) =

X
(a+ b

2
, ·
)

+ C(·)
[∫ b

a

t2G(t, ·)dt−
(a + b

2

)2]

(a.e.).

To prove the right-hand side of (7), we use inequality (1) for the following convex
combinationt = b−t

b−a
a + t−a

b−a
b. By strongly convexity ofX and basic properties of

mean–square integral we have

∫ b

a

X(t, ·)G(t, ·)dt =

∫ b

a

X
( b− t

b− a
a +

t− a

b− a
b, ·

)

G(t, ·)dt 6

∫ b

a

[ b− t

b− a
X(a, ·) +

t− a

b− a
X(b, ·)− C(·)

(b− x)(x− a)

(b− a)2
(b− a)2

]

G(t, ·)dt =

∫ b

a

[bX(a, ·)− aX(b, ·)

b− a
+
X(b, ·)−X(a, ·)

b− a
t−C(·)

(
(a+b)t−ab−t2

)]

G(t, ·)dt (a.e.).

Finally

∫ b

a

X(t, ·)G(t, ·)dt 6
bX(a, ·)− aX(b, ·)

b− a
+

X(b, ·)−X(a, ·)

b− a
·
a+ b

2

− C(·)
[(a+ b)2

2
− ab−

∫ b

a

t2G(t, ·)dt
]

=

X(a, ·) +X(b, ·)

2
− C(·)

[a2 + b2

2
−

∫ b

a

t2G(t, ·)dt
]

(a.e.).

Note that, if we putC(·) = 0 in (7), then we get Fejer inequality for convex
stochastic processes.

X(
a+ b

2
, ·) 6

∫ b

a

X(t, ·)G(t, ·)dt 6
X(a, ·) +X(b, ·)

2
(a.e.). (8)

Using the inequality (8) for the processX(t, ·) = t2J(·) we have

(a+ b

2

)2

6

∫ b

a

t2G(t, ·)dt 6
a2 + b2

2
(a.e.).

By the above inequality, the terms
∫ b

a

t2G(t, ·)dt−
(a + b

2

)2

and
a2 + b2

2
−

∫ b

a

t2G(t, ·)dt
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in the inequality (7) are nonnegative. In consequence, the inequality (7) is stronger
then the inequality (8). Note also, that Fejer inequality (7) generalizes Hermite–
Hadamard inequality proved in [3]. Indeed, forG(t, ·) = 1

b−a
the inequality (7), can

be written in the form

X
(u+ v

2
, ·
)

+ C(·)
(v − u)2

12
6

1

v − u

∫ v

u

X(t, ·) dt

6
X(u, ·) +X(v, ·)

2
− C(·)

(u− v)2

6
(a.e.). (9)

The next result shows that the converse of Hermite–Hadamardtheorem for strongly
convex stochastic processes, is also valid.

Theorem 3.3. Let a stochastic processX : I × Ω → R be mean–square contin-
uous in the intervalI, and let it satisfy the left or right hand side inequality in (9).
Then X is strongly convex.

Proof. First we will prove the theorem in the case when the left hand side inequal-
ity of (9) holds. Let us define a stochastic processY : I × Ω → R, such that
Y (t, ·) = X(t, ·)−C(·)t2, whereC : Ω → R is a random variable occurring in (9).
Substituting the expressionX(t, ·) = Y (t, ·)+C(·)t2 to the left hand side inequality
of (9) we get

Y
(u+ v

2
, ·
)

+ C(·)
(u+ v

2

)2

+ C(·)
(v − u)2

12

6
1

v − u

∫ v

u

(

Y (t, ·) + C(·)t2
)

dt (a.e.). (10)

By the basic properties of mean–square integral we have

Y
(u+ v

2
, ·
)

+ C(·)
4u2 + 4uv + 4v2

12

6
1

v − u

∫ v

u

Y (t, ·) dt + C(·)
1

v − u

v3 − u3

3
(a.e.). (11)

Subtracting by sides in (11) the termC(·)u
2+uv+v2

3
we get

Y
(u+ v

2
, ·
)

6
1

v − u

∫ v

u

Y (t, ·) dt (a.e.).

This means thatY satisfy the left hand side inequality of the Hermite–Hadamard
inequality for convex stochastic processes. By Theorem 6 [2] Y is convex. By
Lemma 2 [3] the stochastic processX is strongly convex with modulusC(·).

Now, let the right hand side of the inequality (9) be satisfied. As before, we
define a stochastic processY : I × Ω → R, such thatY (t, ·) = X(t, ·) − C(·)t2,
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whereC : Ω → R is a random variable occurring in (9). Substituting the expression
X(t, ·) = Y (t, ·) + C(·)t2 to the right hand side inequality of (9) we get

1

v − u

∫ v

u

(

Y (t, ·) + C(·)t2
)

dt

6
Y (u, ·) + Y (v, ·)

2
+ C(·)

u2 + v2

2
− C(·)

(u− v)2

6
(a.e.). (12)

By the basic properties of mean–square integral we have

1

v − u

∫ v

u

Y (t, ·) dt+ C(·)
1

v − u

v3 − u3

3

6
Y (u, ·) + Y (v, ·)

2
+ C(·)

2u2 + 2uv + 2v2

6
(a.e.). (13)

Subtracting by sides in (13) the termC(·)u
2+uv+v2

3
we get

1

v − u

∫ v

u

Y (t, ·) dt 6
Y (u, ·) + Y (v, ·)

2
(a.e.).

ThusY satisfy the right hand side inequality of the Hermite–Hadamard inequality
for convex stochastic processes. By Theorem 6 [2] Y is convex. By Lemma 2 [3]
the stochastic processX is strongly convex with modulusC(·).
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