Ranking Trapezoidal Fuzzy Numbers Based on Apex Angles

Salim Rezvani

Department of Mathematics, Imam Khomaini Maritime University of Nowshahr, Nowshahr, Iran

Abstract

In this paper, we calculation ranking of trapezoidal fuzzy numbers based on apex angles. In fact, the concept of an aggregation operator for fuzzy numbers based on the arithmetic means of the corresponding L- and R- apex angles is extended for a class of Fuzzy Numbers. This method provides the correct ordering of trapezoidal fuzzy numbers and also the this approach is very simple and easy to apply in the real life problems. For the validation, the results of the approach are compared with different existing approaches.

Mathematics Subject Classification: 47S40, 08A72, 03E72.

Keywords: Apex Angles, Trapezoidal Fuzzy Numbers, Ranking Method

1 Introduction

In most of cases in our life, the data obtained for decision making are only approximately known. In1965, Zadeh [26] introduced the concept of fuzzy set theory to meet those problems. In 1978, Dubois and Prade defined any of the fuzzy numbers as a fuzzy subset of the real line [9]. Fuzzy numbers allow us to make the mathematical model of linguistic variable or fuzzy environment. Most of the ranking procedures proposed so far in the literature cannot discriminate fuzzy quantities and some are counterintuitive. As fuzzy numbers are represented by possibility distributions, they may overlap with each other, and hence it is not possible to order them. Ranking fuzzy numbers were first proposed by Jain [11] for decision making in fuzzy situations by representing the ill-defined quantity as a fuzzy set. Since then, various procedures to rank fuzzy quantities are proposed by various researchers. Bortolan and Degani [2] reviewed some of these ranking methods for ranking fuzzy subsets and fuzzy

In this paper, we calculation ranking of trapezoidal fuzzy numbers based on apex angles. In fact, the concept of an aggregation operator for fuzzy numbers based on the arithmetic means of the corresponding L- and R- apex angles is extended for a class of Fuzzy Numbers. This method provides the correct ordering of trapezoidal fuzzy numbers and also the this approach is very simple and easy to apply in the real life problems. For the validation, the results of the approach are compared with different existing approaches.

2 Preliminaries

Generally, a generalized fuzzy number A is described as any fuzzy subset of the real line R, whose membership function μ_A satisfies the following conditions,

(i) μ_A is a continuous mapping from R to the closed interval $[0,1]$,

(ii) $\mu_A(x) = 0, -\infty < x \leq a$,

(iii) $\mu_A(x) = L(x)$ is strictly increasing on $[a,b]$,

(iv) $\mu_A(x) = w, b \leq x \leq c$,

(v) $\mu_A(x) = R(x)$ is strictly decreasing on $[c,d]$,

(vi) $\mu_A(x) = 0, d \leq x < \infty$
Where $0 < w \leq 1$ and $a, b, c,$ and d are real numbers. We call this type of fuzzy number a trapezoidal fuzzy number, and it is denoted by

$$A = (a, b, c, d; w).$$

(1)

A $A = (a, b, c, d; w)$ is a fuzzy set of the real line R whose membership function $\mu_A(x)$ is defined as

$$\mu_A(x) = \begin{cases} \frac{w x - a}{b - a} & \text{if } a \leq x \leq b \\ w & \text{if } b \leq x \leq c \\ \frac{w d - x}{d - c} & \text{if } c \leq x \leq d \\ 0 & \text{Otherwise} \end{cases}$$

(2)

2.1 Fuzzy Aggregation

Aggregation operations on fuzzy numbers are operations by which several fuzzy numbers are combined to produce a single fuzzy number. An excellent account of Mathematical Aggregation Operators is given in [8].

i) Arithmetic Mean

The arithmetic mean aggregation operator defined on n trapezoidal fuzzy numbers $(a_1, b_1, c_1, d_1), (a_2, b_2, c_2, d_2), \ldots, (a_n, b_n, c_n, d_n)$ produces the result (a, b, c, d) where

$$a = \frac{1}{n} \sum_{i=1}^{n} a_i, b = \frac{1}{n} \sum_{i=1}^{n} b_i, c = \frac{1}{n} \sum_{i=1}^{n} c_i \text{ and } d = \frac{1}{n} \sum_{i=1}^{n} d_i.$$

ii) Geometric Mean

The arithmetic mean aggregation operator defined on n trapezoidal fuzzy numbers $(a_1, b_1, c_1, d_1), (a_2, b_2, c_2, d_2), \ldots, (a_n, b_n, c_n, d_n)$ produces the result (a, b, c, d) where

$$a = (\Pi_{i=1}^{n} a_i)^{\frac{1}{n}}, b = (\Pi_{i=1}^{n} b_i)^{\frac{1}{n}}, c = (\Pi_{i=1}^{n} c_i)^{\frac{1}{n}} \text{ and } d = (\Pi_{i=1}^{n} d_i)^{\frac{1}{n}}.$$

An Aggregation Operators trapezoidal fuzzy numbers are given in [19] Consider the trapezoidal fuzzy number shown in (Figure 1). If the value of this trapezoidal fuzzy number is $v \in [b, c]$ the corresponding possibility $\mu = 1$. The left side apex angle of this trapezoidal fuzzy number is ℓ_{apb}. The right side apex angle of this trapezoidal fuzzy number is ℓ_{drc}. The left and right side apex angles of the trapezoid refer to the apex angles subtended to the left and the right of the interval $[b, c]$ respectively. But
\[\mathcal{L}_{apb} = \frac{\pi}{2} - \mathcal{L}_{bap} \quad (3) \]

and

\[\mathcal{L}_{drc} = \mathcal{L}_{sdr} - \frac{\pi}{2} \quad (4) \]

Considering the left side and averaging over \(n \) trapezoidal fuzzy numbers we have

\[\frac{1}{n} \sum_{i=1}^{n} (\mathcal{L}_{apb})_i = \frac{1}{n} \sum_{i=1}^{n} (\mathcal{L}(\frac{\pi}{2} - bap)_i) \quad (5) \]

\[\frac{1}{n} \sum_{i=1}^{n} (\mathcal{L}_{apb})_i = \frac{\pi}{2} - \frac{1}{n} \sum_{i=1}^{n} (\mathcal{L}_{bap})_i \quad (6) \]

The left side of the above equation represents the contributions of the left lines (aggregate apex angle). It can be seen that

\[\tan(\frac{1}{n} \sum_{i=1}^{n} (\mathcal{L}_{apb})_i) = \frac{1}{\tan(\frac{1}{n} \sum_{i=1}^{n} (\mathcal{L}_{bap})_i)} \quad (7) \]

It can be shown that

\[\tan(\frac{1}{n} \sum_{i=1}^{n} (\mathcal{L}_{apb})_i) = [\tan(\frac{1}{n} \sum_{i=1}^{n} \tan^{-1}(b_i - a_i))]^{-1} \quad (8) \]

Under identical treatment, it can be shown that

\[b = \frac{1}{n} \sum_{i=1}^{n} b_i, \quad c = \frac{1}{n} \sum_{i=1}^{n} c_i. \quad (9) \]

Subsequently it is possible to show that

\[a = \frac{1}{n} \sum_{i=1}^{n} b_i - \tan[\frac{1}{n} \sum_{i=1}^{n} \tan^{-1}(b_i - a_i)] \quad (10) \]
and
\[d = \frac{1}{n} \sum_{i=1}^{n} c_i + \tan\left[\frac{1}{n} \sum_{i=1}^{n} \tan^{-1}(d_i - c_i)\right] \] (11)

3 Proposed Approach

In this section, by modifying the Manju Pandey et al. [15] a new approach is proposed for the ranking of trapezoidal fuzzy numbers and using the proposed approach, in the Theorem 1.

Theorem 1. Let \(A_1 = (a_1, b_1, c_1, d_1; w_1) \), \(A_2 = (a_2, b_2, c_2, d_2; w_2) \) be two trapezoidal fuzzy numbers then
\[A_1 > A_2 \text{ if } D(A_1) > D(A_2) \]
\[A_1 < A_2 \text{ if } D(A_1) < D(A_2) \]
\[A_1 \sim A_2 \text{ if } D(A_1) \sim D(A_2) \] (12)

3.1 Method to Find the Values of \(D(A_1) \) and \(D(A_2) \)

Let \(A_1 = (a_1, b_1, \alpha_1, \beta_1; w_1)_E \) and \(A_2 = (a_2, b_2, \alpha_2, \beta_2; w_2)_E \) be two generalized exponential fuzzy numbers, then use the following steps to find the values of \(D(A_1) \) and \(D(A_2) \)

* Step 1
Find \(b_1 \) and \(b_2 \)
\[b_1 = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} \] (13)
and
\[b_2 = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} \] (14)

* Step 2
Find \(c_1 \) and \(c_2 \)
\[c_1 = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} \] (15)
and
\[c_2 = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} \] (16)
* Step 3

Find $x(A_1)$ and $x(A_2)$

$$x(A_1) = a_1 = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} - \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(b_{1i} - a_{1i})\right]$$ (17)

and

$$x(A_2) = a_2 = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} - \tan\left[\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(b_{2i} - a_{2i})\right]$$ (18)

* Step 4

Find $y(A_1)$ and $y(A_2)$

$$y(A_1) = d_1 = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} + \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(d_{1i} - c_{1i})\right]$$ (19)

and

$$y(A_2) = d_2 = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} + \tan\left[\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(d_{2i} - c_{2i})\right]$$ (20)

* Step 5

Calculation $D(A_1)$, $D(A_2)$ as following

$$D(A_1) = \sqrt{x(A_1)^2 + y(A_1)^2}$$ (21)

and

$$D(A_2) = \sqrt{x(A_2)^2 + y(A_2)^2}$$ (22)

and use of theorem 1. we have

$A_1 > A_2$ if $D(A_1) > D(A_2)$

$A_1 < A_2$ if $D(A_1) < D(A_2)$

$A_1 \sim A_2$ if $D(A_1) \sim D(A_2)$

4 Results

Example 1. Let $A = (0.2, 0.4, 0.6, 0.8; 0.35)$ and $B = (0.1, 0.2, 0.3, 0.4; 0.7)$ be two generalized trapezoidal fuzzy number, then
* Step 1
Find b_A and b_B

$$b_A = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} = 0.35 \times 0.4 = 0.14$$

and

$$b_B = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} = 0.7 \times 0.2 = 0.14$$

* Step 2
Find c_A and c_B

$$c_A = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} = 0.35 \times 0.6 = 0.21$$

and

$$c_B = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} = 0.7 \times 0.3 = 0.21$$

* Step 3
Find $x(A)$ and $x(B)$

$$x(A) = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} - \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(b_{1i} - a_{1i})\right] = 0.14 - \tan[0.35(\tan^{-1}(0.4 - 0.2))] =$$

$$= 0.14 - \tan(3.96) = 0.14 - 0.0692 = 0.0708$$

and

$$x(B) = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} - \tan\left[\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(b_{2i} - a_{2i})\right] = 0.14 - \tan[0.7(\tan^{-1}(0.2 - 0.1))] =$$

$$= 0.14 - \tan(4) = 0.14 - 0.0699 = 0.0701$$

* Step 4
Find $y(A)$ and $y(B)$

$$y(A) = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} + \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(d_{1i} - c_{1i})\right] = 0.21 + \tan[0.35(\tan^{-1}(0.8 - 0.6))] =$$
\[= 0.21 + \tan(3.96) = 0.21 + 0.0692 = 0.2792\]

and

\[y(B) = \frac{w_2}{n} \sum_1^n c_{2i} + \tan[\frac{w_2}{n} \sum_1^n \tan^{-1}(d_{2i} - c_{2i})] = 0.21 + \tan[0.7(\tan^{-1}(0.4 - 0.3))] =\]

\[= 0.21 + \tan(4) = 0.21 + 0.0699 = 0.2799\]

* Step 5

Calculation \(D(A), D(B)\) as following

\[D(A) = \sqrt{x(A)^2 + y(A)^2} = \sqrt{(0.0708)^2 + (0.2792)^2} = 0.2880\]

and

\[D(B) = \sqrt{x(B)^2 + y(B)^2} = \sqrt{(0.0701)^2 + (0.2799)^2} = 0.2885\]

Then \(D(A) < D(B) \Rightarrow A < B\).

Example 2. Let \(A = (0.1, 0.2, 0.4, 0.5; 1)\) and \(B = (0.1, 0.3, 0.3, 0.5; 1)\) be two generalized trapezoidal fuzzy number, then

* Step 1

Find \(b_A\) and \(b_B\)

\[b_A = \frac{w_1}{n} \sum_1^n b_{1i} = 1 \times 0.2 = 0.2\]

and

\[b_B = \frac{w_2}{n} \sum_1^n b_{2i} = 1 \times 0.3 = 0.3\]

* Step 2

Find \(c_A\) and \(c_B\)

\[c_A = \frac{w_1}{n} \sum_1^n c_{1i} = 1 \times 0.4 = 0.4\]

and

\[c_B = \frac{w_2}{n} \sum_1^n c_{2i} = 1 \times 0.3 = 0.3\]
* Step 3

Find \(x(A) \) and \(x(B) \)

\[
x(A) = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} - \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(b_{1i} - a_{1i})\right] = 0.2 - \tan\left[(\tan^{-1}(0.2 - 0.1))\right] = 0.2 - \tan(5.7105931) = 0.2 - 0.099999999 = 0.100000001
\]

and

\[
x(B) = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} - \tan\left[\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(b_{2i} - a_{2i})\right] = 0.3 - \tan\left[(\tan^{-1}(0.3 - 0.1))\right] = 0.3 - \tan(11.3099324) = 0.3 - 0.199999998 = 0.100000002
\]

* Step 4

Find \(y(A) \) and \(y(B) \)

\[
y(A) = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} + \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(d_{1i} - c_{1i})\right] = 0.4 + \tan\left[(\tan^{-1}(0.5 - 0.4))\right] = 0.4 + \tan(5.7105931) = 0.4 + 0.099999999 = 0.499999999
\]

and

\[
y(B) = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} + \tan\left[\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(d_{2i} - c_{2i})\right] = 0.3 + \tan\left[(\tan^{-1}(0.5 - 0.3))\right] = 0.3 + \tan(11.3099324) = 0.3 + 0.199999998 = 0.499999998
\]

* Step 5

Calculation \(D(A) \), \(D(B) \) as following

\[
D(A) = \sqrt{x(A)^2 + y(A)^2} = \sqrt{(0.100000001)^2 + (0.499999999)^2} = 0.50990195
\]

and

\[
D(B) = \sqrt{x(B)^2 + y(B)^2} = \sqrt{(0.100000002)^2 + (0.499999998)^2} = 0.50990194
\]

Then \(D(A) > D(B) \) \(\Rightarrow A > B \).
Example 3. Let $A = (0.1, 0.2, 0.4, 0.5; 1)$ and $B = (1, 1, 1, 1; 1)$ be two generalized trapezoidal fuzzy number, then

* Step 1 Find b_A and b_B

$$b_A = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} = 1 \times 0.2 = 0.2$$

and

$$b_B = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} = 1 \times 1 = 1$$

* Step 2

Find c_A and c_B

$$c_A = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} = 1 \times 0.4 = 0.4$$

and

$$c_B = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} = 1 \times 1 = 1$$

* Step 3

Find $x(A)$ and $x(B)$

$$x(A) = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} - \tan\left(\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(b_{1i} - a_{1i})\right) = 0.2 - \tan\left(\tan^{-1}(0.2 - 0.1)\right) =$$

$$= 0.2 - \tan(5.7105931) = 0.2 - 0.099999999 = 0.100000001$$

and

$$x(B) = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} - \tan\left(\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(b_{2i} - a_{2i})\right) = 1 - \tan\left(\tan^{-1}(1 - 1)\right) =$$

$$= 1 - \tan(0) = 1 - 0 = 1$$

* Step 4

Find $y(A)$ and $y(B)$

$$y(A) = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} + \tan\left(\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(d_{1i} - c_{1i})\right) = 0.4 + \tan\left(\tan^{-1}(0.5 - 0.4)\right) =$$
\[= 0.4 + \tan(5.7105931) = 0.4 + 0.099999999 = 0.499999999\]

and
\[
y(B) = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} + \tan\left(\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(d_{2i} - c_{2i})\right) = 1 + \tan((\tan^{-1}(1 - 1))] = \]
\[= 1 + \tan(0) = 1 + 0 = 1\]

* Step 5

Calculation \(D(A), D(B)\) as following

\[D(A) = \sqrt{x(A)^2 + y(A)^2} = \sqrt{(0.100000001)^2 + (0.499999999)^2} = 0.50990195\]

and
\[D(B) = \sqrt{x(B)^2 + y(B)^2} = \sqrt{(1)^2 + (1)^2} = 1.4142\]

Then \(D(A) < D(B) \Rightarrow A < B\).

Example 4. Let \(A = (-0.5, -0.3, -0.3, -0.1; 1)\) and \(B = (0.1, 0.3, 0.3, 0.5; 1)\) be two generalized trapezoidal fuzzy number, then

* Step 1 Find \(b_A\) and \(b_B\)

\[b_A = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} = 1 \times (-0.3) = -0.3\]

and

\[b_B = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} = 1 \times 0.3 = 0.3\]

* Step 2

Find \(c_A\) and \(c_B\)

\[c_A = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} = 1 \times (-0.3) = -0.3\]

and

\[c_B = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} = 1 \times 0.3 = 0.3\]
* Step 3

Find \(x(A) \) and \(x(B) \)

\[
x(A) = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} - \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(b_{1i} - a_{1i})\right] = -0.3 - \tan\left[(\tan^{-1}(-0.3 + 0.5))\right] = -0.3 - \tan(11.3099324) = -0.3 - 0.199999998 = -0.499999998
\]

and

\[
x(B) = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} - \tan\left[\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(b_{2i} - a_{2i})\right] = 0.3 - \tan\left[(\tan^{-1}(0.3 - 0.1))\right] = 0.3 - \tan(11.3099324) = 0.3 - 0.199999998 = 0.100000002
\]

* Step 4

Find \(y(A) \) and \(y(B) \)

\[
y(A) = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} + \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(d_{1i} - c_{1i})\right] = -0.3 + \tan\left[(\tan^{-1}(-0.1 + 0.3))\right] = -0.3 + \tan(11.3099324) = -0.3 + 0.199999998 = -0.100000002
\]

and

\[
y(B) = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} + \tan\left[\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(d_{2i} - c_{2i})\right] = 0.3 + \tan\left[(\tan^{-1}(0.5 - 0.3))\right] = 0.3 + \tan(11.3099324) = 0.3 + 0.199999998 = 0.499999998
\]

* Step 5

Calculation \(D(A) \), \(D(B) \) as following

\[
D(A) = \sqrt{x(A)^2 + y(A)^2} = \sqrt{(-0.499999998)^2 + (-0.100000002)^2} = 0.50990194
\]

and

\[
D(B) = \sqrt{x(B)^2 + y(B)^2} = \sqrt{(0.100000002)^2 + (0.499999998)^2} = 0.50990194
\]

Then \(D(A) \sim D(B) \Rightarrow A \sim B \).
Example 5. Let $A = (0.3, 0.5, 0.5, 1; 1)$ and $B = (0.1, 0.6, 0.6, 0.8; 1)$ be two generalized trapezoidal fuzzy number, then

* Step 1 Find b_A and b_B

$$b_A = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} = 1 \times 0.5 = 0.5$$

and

$$b_B = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} = 1 \times 0.6 = 0.6$$

* Step 2

Find c_A and c_B

$$c_A = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} = 1 \times 0.5 = 0.5$$

and

$$c_B = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} = 1 \times 0.6 = 0.6$$

* Step 3

Find $x(A)$ and $x(B)$

$$x(A) = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} - \tan\left(\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(b_{1i} - a_{1i})\right) = 0.5 - \tan\left(\tan^{-1}(0.5 - 0.3)\right) =$$

$$= 0.5 - \tan(11.3099324) = 0.5 - 0.199999998 = 0.300000002$$

and

$$x(B) = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} - \tan\left(\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(b_{2i} - a_{2i})\right) = 0.6 - \tan\left(\tan^{-1}(0.6 - 0.1)\right) =$$

$$= 0.6 - \tan(26.565051) = 0.6 - 0.499999996 = 0.100000004$$

* Step 4

Find $y(A)$ and $y(B)$

$$y(A) = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} + \tan\left(\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(d_{1i} - c_{1i})\right) = 0.5 + \tan\left(\tan^{-1}(1 - 0.5)\right) =$$
\[= 0.5 + \tan(26.565051) = 0.5 + 0.499999996 = 0.999999996\]

and

\[y(B) = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} + \tan\left(\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(d_{2i} - c_{2i})\right) = 0.6 + \tan[(\tan^{-1}(0.8 - 0.6))] =\]

\[= 0.6 + \tan(11.309324) = 0.6 + 0.199999998 = 0.799999998\]

* Step 5

Calculation \(D(A), D(B)\) as following

\[D(A) = \sqrt{x(A)^2 + y(A)^2} = \sqrt{(0.300000002)^2 + (0.999999996)^2} = 1.044\]

and

\[D(B) = \sqrt{x(B)^2 + y(B)^2} = \sqrt{(0.100000004)^2 + (0.799999998)^2} = 0.8062\]

Then \(D(A) > D(B) \Rightarrow A > B\).

Example 6. Let \(A = (0, 0.4, 0.6, 0.8; 1)\) and \(B = (0.2, 0.5, 0.5, 0.9; 1)\) and \(C = (0.1, 0.6, 0.7, 0.8; 1)\) be three generalized trapezoidal fuzzy number, then

* Step 1 Find \(b_A\) and \(b_B\) and \(b_C\)

\[b_A = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} = 1 \times 0.4 = 0.4\]

and

\[b_B = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} = 1 \times 0.5 = 0.5\]

and

\[b_C = \frac{w_3}{n} \sum_{i=1}^{n} b_{3i} = 1 \times 0.6 = 0.6\]

* Step 2

Find \(c_A\) and \(c_B\) and \(c_C\)

\[c_A = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} = 1 \times 0.6 = 0.6\]
and
\[c_B = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} = 1 \times 0.5 = 0.5 \]
and
\[c_C = \frac{w_3}{n} \sum_{i=1}^{n} c_{3i} = 1 \times 0.7 = 0.7 \]

* Step 3

Find \(x(A) \) and \(x(B) \) and \(x(C) \)

\[
x(A) = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} - \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(b_{1i} - a_{1i})\right] = 0.4 - \tan\left[\tan^{-1}(0.4 - 0)\right] = 0.4 - \tan(21.801409) = 0.4 - 0.399999990 = 0.00000001
\]

and

\[
x(B) = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} - \tan\left[\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(b_{2i} - a_{2i})\right] = 0.5 - \tan\left[\tan^{-1}(0.5 - 0.2)\right] = 0.5 - \tan(16.699244) = 0.5 - 0.299999995 = 0.20000005
\]

and

\[
x(C) = \frac{w_3}{n} \sum_{i=1}^{n} b_{3i} - \tan\left[\frac{w_3}{n} \sum_{i=1}^{n} \tan^{-1}(b_{3i} - a_{3i})\right] = 0.6 - \tan\left[\tan^{-1}(0.6 - 0.1)\right] = 0.6 - \tan(26.565051) = 0.6 - 0.499999996 = 0.10000004
\]

* Step 4

Find \(y(A) \) and \(y(B) \) and \(y(C) \)

\[
y(A) = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} + \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(d_{1i} - c_{1i})\right] = 0.6 + \tan\left[\tan^{-1}(0.8 - 0.6)\right] = 0.6 + \tan(11.309324) = 0.6 + 0.199999998 = 0.799999998
\]

and

\[
y(B) = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} + \tan\left[\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(d_{2i} - c_{2i})\right] = 0.5 + \tan\left[\tan^{-1}(0.9 - 0.5)\right] =
\]
\[0.5 + \tan(21.801409) = 0.5 + 0.399999990 = 0.89999999 \]

and

\[y(C) = \frac{w_3}{n} \sum_{i=1}^{n} c_{3i} + \tan\left[\frac{w_3}{n} \sum_{i=1}^{n} \tan^{-1}(d_{3i} - c_{3i}) \right] = 0.7 + \tan\left[\tan^{-1}(0.8 - 0.7) \right] = 0.7 + \tan(5.7105931) = 0.7 + 0.099999999 = 0.799999999 \]

* Step 5

Calculation \(D(A) \), \(D(B) \) and \(D(C) \) as following

\[D(A) = \sqrt{x(A)^2 + y(A)^2} = \sqrt{(0.00000001)^2 + (0.799999998)^2} = 0.8 \]

and

\[D(B) = \sqrt{x(B)^2 + y(B)^2} = \sqrt{(0.200000005)^2 + (0.89999999)^2} = 0.9219 \]

and

\[D(C) = \sqrt{x(C)^2 + y(C)^2} = \sqrt{(0.100000004)^2 + (0.799999999)^2} = 0.8062 \]

Then \(D(A) < D(C) < D(B) \) \(\Rightarrow A < C < B \).

Example 7. Let \(A = (0.1, 0.2, 0.4, 0.5; 1) \) and \(B = (-2, 0, 0, 2; 1) \) be two generalized trapezoidal fuzzy number, then

* Step 1 Find \(b_A \) and \(b_B \)

\[b_A = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} = 1 \times 0.2 = 0.2 \]

and

\[b_B = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} = 1 \times 0 = 0 \]

* Step 2

Find \(c_A \) and \(c_B \)

\[c_A = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} = 1 \times 0.4 = 0.4 \]
and
\[c_B = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} = 1 \times 0 = 0 \]

* Step 3
Find \(x(A)\) and \(x(B)\)
\[x(A) = \frac{w_1}{n} \sum_{i=1}^{n} b_{1i} - \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(b_{1i} - a_{1i}) \right] = 0.2 - \tan(\tan^{-1}(0.2 - 0.1)) =
\]
\[= 0.2 - \tan(5.7105931) = 0.2 - 0.099999999 = 0.100000001 \]

and
\[x(B) = \frac{w_2}{n} \sum_{i=1}^{n} b_{2i} - \tan\left[\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(b_{2i} - a_{2i}) \right] = 0 - \tan(\tan^{-1}(0 + 2)) =
\]
\[= 0 - \tan(63.434949) = 0 - 2.00000001 = -2.00000001 \]

* Step 4
Find \(y(A)\) and \(y(B)\)
\[y(A) = \frac{w_1}{n} \sum_{i=1}^{n} c_{1i} + \tan\left[\frac{w_1}{n} \sum_{i=1}^{n} \tan^{-1}(d_{1i} - c_{1i}) \right] = 0.4 + \tan(\tan^{-1}(0.5 - 0.4)) =
\]
\[= 0.4 + \tan(5.7105931) = 0.4 + 0.099999999 = 0.499999999 \]

and
\[y(B) = \frac{w_2}{n} \sum_{i=1}^{n} c_{2i} + \tan\left[\frac{w_2}{n} \sum_{i=1}^{n} \tan^{-1}(d_{2i} - c_{2i}) \right] = 0 + \tan(\tan^{-1}(2 - 0)) =
\]
\[= 0 + \tan(63.434949) = 0 + 2.00000001 = 2.00000001 \]

* Step 5
Calculation \(D(A), D(B)\) as following
\[D(A) = \sqrt{x(A)^2 + y(A)^2} = \sqrt{(0.100000001)^2 + (0.499999999)^2} = 0.50990195 \]
and
\[D(B) = \sqrt{x(B)^2 + y(B)^2} = \sqrt{(-2.00000001)^2 + (2.00000001)^2} = 2.8284 \]

Then \(D(A) < D(B) \Rightarrow A < B \).

For the validation of the proposed ranking function, in Table 1, it is shown that this approach is very simple and easy to apply in the real life problems. For the validation, the results of the approach are compared with different existing approaches.

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Ex.1</th>
<th>Ex.2</th>
<th>Ex.3</th>
<th>Ex.4</th>
<th>Ex.5</th>
<th>Ex.6</th>
<th>Ex.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheng1998</td>
<td>A < B</td>
<td>A ~ B</td>
<td>Error</td>
<td>A ~ B</td>
<td>A > B</td>
<td>A < B < C</td>
<td>Error</td>
</tr>
<tr>
<td>Chu2002</td>
<td>A < B</td>
<td>A ~ B</td>
<td>Error</td>
<td>A < B</td>
<td>A > B</td>
<td>A < B < C</td>
<td>Error</td>
</tr>
<tr>
<td>Abbasbandy2009</td>
<td>Error</td>
<td>A ~ B</td>
<td>A < B</td>
<td>A ~ B</td>
<td>A < B</td>
<td>A < B < C</td>
<td>A > B</td>
</tr>
<tr>
<td>Chen2009</td>
<td>A < B</td>
<td>A < B</td>
<td>A < B</td>
<td>A < B</td>
<td>A > B</td>
<td>A < B < C</td>
<td>A > B</td>
</tr>
<tr>
<td>Kumar2010</td>
<td>A > B</td>
<td>A ~ B</td>
<td>A < B</td>
<td>A < B</td>
<td>A > B</td>
<td>A < B < C</td>
<td>A > B</td>
</tr>
<tr>
<td>Singh2010</td>
<td>A < B</td>
<td>A < B</td>
<td>A < B</td>
<td>A < B</td>
<td>A > B</td>
<td>A < B < C</td>
<td>A > B</td>
</tr>
<tr>
<td>Rezvani2013</td>
<td>A > B</td>
<td>A < B < C</td>
<td>A > B</td>
</tr>
</tbody>
</table>

References

the centroid point and original point, Computers and Mathematics with

[7] Y. Deng and Q. Liu, A TOPSIS-based centroid-index ranking method of
fuzzy numbers and its applications in decision making, Cybernetics and

