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Abstract

We introduce the notion of ordered (L, e)-filters with fuzzy partially
order e on complete residuated lattice L. We define the images and
preimages of (L, e)-filters using Zadeh image and preimage operators.
We study the images and preimages of (L, e)-filters induced by functions.
We investigate their properties.
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1 Introduction

Höhle et al. [5,6] introduced the notion of L-filter on a complete quasi-monoidal
lattice ( including GL-monoid [4] ) L instead of a completely distributive lattice
([2-4]) as an extension of fuzzy filters [1,2]. The notion of L-filter facilitated to
study L-fuzzy topologies [3,5,6], L-fuzzy uniform spaces [5,6] and topological
structures [7].

In this paper, we define ordered (L, e)-filters with fuzzy partially order e on
complete residuated lattice L and investigate their properties. We consider the
Zadeh image operator φ→L and the Zadeh preimage operator φ←L in a sense [8].
We investigate the images and preimages of (L, e)-filters induced by functions.

2 Preliminaries

Definition 2.1 [5,6,9] A triple (X,≤, ∗) is called a complete residuated lat-
tice iff it satisfies the following properties:

(L1) (X,≤, 1, 0) is a complete lattice where 1 is the universal upper bound
and 0 denotes the universal lower bound;
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(L2) (X, ∗, 1) is a commutative monoid;
(L3) ∗ is distributive over arbitrary joins, i.e.

(
∨

i∈Γ

ai) ∗ b =
∨

i∈Γ

(ai ∗ b).

Example 2.2 [5,6,9] (1) Each frame (L,≤,∧) is a complete residuated lat-
tice.

(2) The unit interval with a left-continuous t-norm t, ([0, 1],≤, t), is a
complete residuated lattice.

(3) Define a binary operation ∗ on [0, 1] by x∗y = max{0, x+y−1}. Then
([0, 1],≤, ∗) is a complete residuated lattice.

Let (L,≤,⊙) be a complete residuated lattice. A order reversing map
c : L→ L defined by ac = a→ 0 is called a strong negation if acc = a for each
a ∈ L.

In this paper, we assume (L,≤,⊙,c ) is a complete residuated lattice with
a strong negation c.

Definition 2.3 [5,6,9] Let X be a set. A function eX : X×X → L is called
fuzzy partially order on X if it satisfies the following conditions:

(E1) eX(x, x) = 1 for all x ∈ X ,
(E2) eX(x, y)⊙ eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X ,
(E3) if eX(x, y) = eX(y, x) = 1, then x = y.
The pair (X, eX) is a fuzzy partially order set (simply, fuzzy poset).
Let (X,≤, ∗) be a complete residuated lattice. A fuzzy poset (X, eX) is a

p-fuzzy poset if eX(x1, y1)⊙ eX(x2, y2) ≤ eX(x1 ∗ x2, y1 ∗ y2) for each xi, yi ∈ X

and eX(x, y) = 1 if x ≤ y.

Lemma 2.4 [5,6,9] For each x, y, z, xi, yi ∈ L, we define x → y =
∨

{z ∈
L | x⊙ z ≤ y}. Then the following properties hold.

(1) If y ≤ z, (x⊙ y) ≤ (x⊙ z) and x→ y ≤ x→ z and z → x ≤ y → x.
(2) x⊙ y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.

(3) x→ (
∧

i∈Γ yi) =
∧

i∈Γ(x→ yi)
(4) (

∨

i∈Γ xi) → y =
∧

i∈Γ(xi → y).
(5) x→ (

∨

i∈Γ yi) =
∨

i∈Γ(x→ yi)
(6) (

∧

i∈Γ xi) → y =
∨

i∈Γ(xi → y).
(7)

∧

i∈Γ y
c
i = (

∨

i∈Γ yi)
c and

∨

i∈Γ y
c
i = (

∧

i∈Γ yi)
c.

(8) (x⊙ y) → z = x→ (y → z) = y → (x→ z).
(9) 1 → x = x.
(10) If x ≤ y, then x→ y = 1.
(11) (x→ y)⊙ (y → z) ≤ x→ z.

(12) (x1 → y1)⊙ (x2 → y2) ≤ (x1 ⊙ x2 → y1 ⊙ y2).
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Example 2.5 (1) We define a map eL : L × L → L eL(x, y) = x → y =
∨

{z ∈ L | x⊙z ≤ y}. Then (L, eL) is a p-fuzzy poset from Lemma 2.4 (10-12).
(2) We define a function eLX : LX × LX → L as eLX (f, g) =

∧

x∈X(f(x) →
g(x)). Then (LX , eLX ) is a p-fuzzy poset.

(3) If (X, eX) is a fuzzy poset and we define a function e−1X (x, y) = eX(y, x),
then (X, e−1X ) is a fuzzy poset.

3 Ordered (L, e)-filters

Definition 3.1 Let (X,≤, ∗) be a complete residuated lattice and eX a
fuzzy poset. A mapping F : X → L is called an ordered (L, eX)-filter (for
short, (L, eX)-filter) on X if it satisfies the following conditions:

(F1) F(0) = 0 and F(1) = 1,
(F2) F(x ∗ y) ≥ F(x)⊙ F(y), for each x, y ∈ X ,
(F3) F(x)⊙ eX(x, y) ≤ F(y).

The pair (X,F) is called an (L, eX)-filter space.
Let F1 and F2 be (L, e)-filters on X . We say F1 is finer than F2 (or F2 is

coarser than F1) iff F2 ≤ F1.

Example 3.2 (1) We define a fuzzy poset eL(x, y) = x→ y as in Example
2.5(1). Let F be an (L, eL)-filter on L. By (F3), since F(x) ⊙ eX(x, 0) ≤
F(0) = 0, we have F(x) ≤ xcc = x. Also, since x = F(1) ⊙ eL(1, x) ≤ F(x),
we have F(x) = x.

(2) Since x ≤ y iff eX(x, y) = 1, by (F3), If x ≤ y, then F(x) ≤ F(y).
Hence the above definition is an extension of Höhle et al. [14,15].

(3) Let (X,≤, ∗) be a complete residuated lattice and (X, eX) a p-fuzzy
poset with eX(1, 0) = 0. Then a mapping F : X → L defined by F(x) =
eX(1, x) is an (L, eX)-filter on X because

(F1) F(0) = eX(1, 0) = 0,F(1) = eX(1, 1) = 1,
(F2) F(x ∗ y) = eX(1, x ∗ y) ≥ eX(1, x)⊙ eX(1, y) = F(x)⊙ F(y).
(F3) F(x)⊙ eX(x, y) = eX(1, x)⊙ eX(x, y) ≤ eX(1, y) = F(y).

Theorem 3.3 Let (X, eX) be a p-fuzzy poset. A mapping F : X → L is an
(L, eX)-filter on X iff it satisfies the conditions (F1),(F3) and

F(x⇒ y)⊙ F(x) ≤ F(y)

where x ⇒ y =
∨

{z ∈ X | x ∗ z ≤ y}.

Proof
F(y) ≥ F(x ∗ (x⇒ y))⊙ eX(x ∗ (x⇒ y), y)

≥ F(x ∗ (x⇒ y)) ≥ F(x)⊙ F(x⇒ y).
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F(x ∗ y) ≥ F(x⇒ (x ∗ y))⊙ F(x)
≥ F(y)⊙ eX(y, x⇒ (x ∗ y))⊙ F(x) = F(x)⊙ F(y).

Theorem 3.4 Let (X,≤, ∗) be a complete residuated lattice and (X, eX) a
p-fuzzy poset. If H : X → L is a function satisfying the following condition:

(C) H(1) = 1 and for every finite index set K,

∨

K

⊙i∈KH(xi)⊙ eX(∗i∈Kxi, 0) = 0.

We define a function FH : LX → L as

FH(x) =
∨

(⊙i∈KH(xi))⊙ eX(∗i∈Kxi, x)

where the
∨

is taken for every finite set K.
Then:
(1) FH is an (L, eX)-filter on X,
(2) if H ≤ F and F is an (L, eX)-filter on X, then FH ≤ F .

Proof. (1) (F1) By the condition (C), FH(1) = 1 and FH(0) = 0.
(F2) For each two finite index sets K and J ,

FH(x1)⊙FH(x2)

=
∨

K

(

(⊙i∈KH(yi))⊙ eX(∗i∈Kyi, x1)
)

⊙
∨

J

(

(⊙j∈JH(zj))⊙ eX(∗j∈Jzj , x2)
)

≤
∨

K∪J

(

(⊙i∈KH(yi))⊙ (⊙j∈JH(zj))⊙ eX((∗i∈Kyi) ∗ (∗j∈Jzj), x1 ∗ x2)
)

≤ FH(x1 ∗ x2).

(F3)

FH(x)⊙ eX(x, y) =
∨

(⊙i∈KH(yi))⊙ eX(∗i∈Kyi, x)⊙ eX(x, y) ≤ FH(y).

Thus, FH is an (L, eX)-filter on X .
(2) For each finite index set K, we have

F(x) ≥ F(∗i∈Kxi)⊙ eX(∗i∈Kxi, x)
≥ ⊙i∈KF(xi)⊙ eX(∗i∈Kxi, x)
≥ ⊙i∈KH(xi)⊙ eX(∗i∈Kxi, x).

Thus FH ≤ F .
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Definition 3.5 Let (X,F) and (Y,G) be two (L, eX) and (L, eY )-filter
spaces. Then a function φ : X → Y is said to be:

(1) an filter map iff G(y) ≤
∨

x∈φ−1({y}) F(x), for all y ∈ Y ,
(2) an filter preserving map iff F(x) ≤ G(φ(x)) for all x ∈ X .
(3) an ordered preserving map iff eX(x, y) ≤ eY (φ(x), φ(x)) for all x, y ∈ X .
(4) φ−1 : Y → X is an ordered preserving relation iff for all x, y ∈ Y ,

eY (x, y) ≤
∧

a∈φ−1({x}),b∈φ−1({y})

eX(a, b).

Naturally, the composition of filter maps (resp. filter preserving maps) is
an filter map (resp. filter preserving map).

Example 3.6 Let X = {0, 1
4
, 1
2
, 3
4
, 1} be a set, (L = [0, 1],⊙) complete

residuated lattice with x ⊙ y = (x + y − 1) ∨ 0 and x → y = (1 − x + y) ∧ 1.
Define functions Fi : X → [0, 1] as follows:

F1(x) =











1 if x = 1,
1
2
if x = 3

4
,

0 otherwise,
F2(x) =











1 if x = 1,
3
4
if x ∈ {3

4
, 1
2
}

0 otherwise,

e0, e1 : X ×X → [0, 1] as follows:

e0(x, y) =

{

1 if x ≤ y,

0 otherwise,

and e1(x, y) = x→ y.

(1) F1 is an (L, e0)-filter but not an (L, e1)-filter because

1

2
= (F1(1)⊙ e1(1,

1

2
)) 6≤ F1(

1

2
) = 0.

Since F1(x)⊙ e1(x, 0) = 0, we obtain FF1
(x) = e1(1, x) ∨ (1

2
⊙ e1(

3
4
, x)) = x.

(2) Since 0 = F2(
1
2
⊙ 1

2
) 6≥ F2(

1
2
)⊙F2(

1
2
) = 1

2
, F2 is neither an (L, e0)-filter

nor an (L, e1)-filter. Furthermore, it satisfies the condition(C) of Theorem 3.4
because

F2(
1

2
)⊙F2(

1

2
)⊙ ei(

1

2
⊙

1

2
, 0) =

1

2
6= 0, i ∈ {0, 1}.

(3) Let X = {0, 1
4
, 1
2
, 3
4
, 1} be a set. Define a function φ : X → Y as follows:

φ(0) = φ(
1

4
) = 0, φ(

1

2
) = φ(

3

4
) =

1

2
, φ(1) = 1.

Let G : Y → [0, 1] be an ([0, 1], e1) filter as

G(y) =











1 if y = 1,
1
2
if y = 1

2
,

0 if y = 0.
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Since F1 and G are ([0, 1], e0) and ([0, 1], e1) filters, respectively and G(y) ≤
∨

x∈φ−1({y}) F1(x) and F1(x) ≤ G(φ(x)), φ are filter map and filter preserving
map. Since e0(x, y) ≤ e1(φ(x), φ(x)) for all x, y ∈ X , φ : (X, e0) → (Y, e1)
is an order preserving map. Since 3

4
= e1(1,

3
4
) 6≤ e1(φ(1), φ(

3
4
)) = 1

2
, then

φ : (X, e1) → (Y, e1) is not an order preserving map. Since 1
2
= e1(

1
2
, 0) 6≤

e1(φ(
3
4
), 0) = 1

4
, for 1

4
∈ φ−1(1

2
), 0 ∈ φ−1(0), then φ−1 : (Y, e1) → (X, e1) is not

an order preserving relation.

4 The preimages and images of (L, e)-filters

In this section we consider the preimages and images of (L, eX)-filters.

Definition 4.1 Let φ : X → Y be a function, F an (L, eX)-filter on X and
G an (L, eY )-filter Y .

(1) The image of F is a function φ→L (F) : Y → L defined by

φ→L (F)(y) =
∨

{F(x) | x = φ−1(y)}.

(2) The preimage of G is a function φ←L (G) : X → L defined by

φ←L (G)(x) = G(φ(x)).

(3) Let H : X → L be a function and x ∈ X . We denote

[H](x) =
∨

y∈X

H(y)⊙ eX(y, x).

Theorem 4.2 Let (X,≤, ∗) and (Y,≤, ⋆) be complete residuated lattices.
Let φ : X → Y be an order preserving function with φ(x ∗ y) ≥ φ(x) ⋆ φ(y),
φ(0) = 0 and φ(1) = 1, eX , eY p-fuzzy posets and G an (L, eY )-filter on Y .
Then:

(1) [φ←L (G)] is the coarsest (L, eX)-filter for which φ : (X, [φ←L (G)]) → (Y,G)
is a filter map.

(2) If eX(x, y) = eY (φ(x), φ(y)) for x, y ∈ X, then [φ←L (G)] = φ←L (G).

Proof. (1) (F1) is obvious.

[φ←L (G)](0) =
∨

x∈X φ
←
L (G)(x)⊙ eX(x, 0)

≤
∨

x∈X G(φ(x))⊙ eY (φ(x), 0) ≤ G(0) = 0.

(F2)
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[φ←L (G)](x1)⊙ [φ←L (G)](x2)
=

∨

z1∈X(φ
←
L (G)(z1)⊙ eX(z1, x1))⊙

∨

z2∈X(φ
←
L (G)(z2)⊙ eX(z2, x2))

=
∨

z1∈X(G(φ(z1))⊙ eX(z1, x1))⊙
∨

z2∈X(G(φ(z2))⊙ eX(z2, x2))
≤

∨

y1,y2∈X(G(φ(z1) ⋆ φ(z2))⊙ eX(z1 ∗ z2, x1 ∗ x2))
(G(φ(z1) ⋆ φ(z2))⊙ eY (φ(z1) ⋆ φ(z2), φ(z1 ∗ z2)) ≤ G(φ(z1 ∗ z2)))

≤
∨

y1,y2∈X(G(φ(z1 ∗ z2))⊙ eY (φ(z1 ∗ z2), φ(x1 ∗ x2)) ≤ G(φ(x1 ∗ x2))
= [φ←L (G)](x1 ∗ x2).

(F3)
[φ←L (G)](x)⊙ eX(x, z)
=

∨

w∈X(φ
←
L (G)(w)⊙ eX(w, x)⊙ eX(x, z))

≤
∨

w∈X(φ
←
L (G)(w)⊙ eX(w, z)) = [φ←L (G)](z).

∨

x∈φ−1({y})[φ
←
L (G)](x) =

∨

x∈φ−1({y})

∨

z∈X φ
←
L (G)(z)⊙ eX(z, x)

≥
∨

x∈φ−1({y}) φ
←
L (G)(x)⊙ eX(x, x) = G(y).

Let φ : (X,F) → (Y,G) be a filter map;i.e. G(y) ≤
∨

x∈φ−1({y}) F(x).

[φ←L (G)](x) =
∨

z∈X φ
←
L (G)(z)⊙ eX(z, x)

=
∨

z∈X G(φ(z))⊙ eX(z, x)
≤

∨

w∈φ−1({φ(z)}) F(w)⊙ eX(w, x) ≤ F(x).

(2) It follows from

[φ←L (G)](x) =
∨

z∈X φ
←
L (G)(z)⊙ eX(z, x)

=
∨

z∈X G(φ(z))⊙ eY (φ(z), φ(x))
= G(φ(x)) = φ←L (G)(x).

Example 4.3 Let X = {0, 1
4
, 1
2
, 3
4
, 1} and Y = {0, 1

2
, 1} be sets, (L =

[0, 1],⊙) complete residuated lattice as in Example 3.6. Define functions
G1 : Y → [0, 1],F1,F2 : X → [0, 1] as follows:

G1(y) =











1 if y = 1,
1
2
if y = 1

2
,

0 otherwise,
F1(x) = x, F2(x) =











1 if x = 1,
1
2
if x = 3

4

0 otherwise.

e0, e1 are fuzzy posets on X and Y as follows:

e0(x, y) =

{

1 if x ≤ y,

0 otherwise,

and e1(x, y) = x→ y.
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(1) Define a function φ : X → Y as follows:

φ(0) = φ(
1

4
) = 0, φ(

1

2
) = φ(

3

4
) =

1

2
, φ(1) = 1.

We have φ(x⊙ y) ≥ φ(x)⊙ φ(y), but not equality as follows:

1

2
= φ(

3

4
⊙

3

4
) > φ(

3

4
)⊙ φ(

3

4
) = 0.

Furthermore, e0(x, y) ≤ e0(φ(x), φ(y)). Then [φ←L (G1)] = φ←L (G1) is (L, e0)-
filters as

[φ←L (G1)](x) =











1 if x = 1,
1
2
if x ∈ {1

2
, 3
4
}

0 if x ∈ {1
4
, 0}.

But φ←L (G1) is not a (L, e1)-filter because

3

4
= φ←L (G1)(1)⊙ e1(1,

3

4
) 6≤ φ←L (G1)(

3

4
) =

1

2

But [φ←L (G1)](x) = e1(1, x)∨ (1
2
⊙ e1(

3
4
, x))∨ (1

2
⊙ e1(

1
2
, x)) is an (L, e1)-filter as

follows

[φ←L (G1)](x) =































1 if x = 1,
3
4
if x = 3

4
,

1
2
if x = 1

2
,

1
4
if x = 1

4
,

0 if x = 0.

Since 3
4
= e1(1,

3
4
) 6≤ e1(φ(1), φ(

3
4
)) = e1(1,

1
2
) = 1

2
, The converse of the above

theorem need not be true.
(2) Define a function ψ : Y → X as follows:

ψ(0) = 0, ψ(
1

2
) =

1

2
, ψ(1) = 1.

Since ei(x, y) = ei(ψ(x), ψ(y)) for i ∈ {0, 1}, We obtain [ψ←L (Fi)] = ψ←L (Fi)
for i ∈ {1, 2} as follows;

ψ←L (F1)(x) =











1 if y = 1,
1
2
if y = 1

2

0 if y = 0.
ψ←L (F2)(y) =

{

1 if y = 1,
0 otherwise.

Theorem 4.4 Let (X,≤, ∗) and (Y,≤, ⋆) be complete residuated lattices.
Let φ : X → Y be a function with φ(x ∗ y) ≤ φ(x) ⋆ φ(y) with φ(1) = 1 and
φ(0) = 0, eX , eY p-fuzzy posets. Let F and G be (L, eX) and (L, eY )-filters,
respectively. Then we have the following properties.
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(1) If F(x)⊙eY (φ(x), 0) = 0, then [φ→L (F)] is the coarsest (L, eY )-filter for
which φ : (X,F) → (Y, [φ→L (F)]) is a filter preserving map.

(2) If φ is injective and φ−1 is order-preserving relation, [φ→L (F)] is an
(L, eX)-filter.

(3) If φ is surjective, φ−1 is order-preserving relation and F is an (L, eX)-
filter with F(x)⊙ eY (φ(x), 0) = 0, then φ→L (F) is an (L, eX)-filter.

(4) If φ : X → Y is an order preserving map with φ(x ∗ y) = φ(x) ⋆ φ(y),
then [φ→L ([φ←L (G)])] is an (L, eY )-filter on Y with [φ→L ([φ←L (G)])] ≤ G.

Proof. (1) (F1) Since φ−1(1) = 1, [φ→L (F)](1) = 1. By the assumption,

[φ→L (F)](0) =
∨

y∈Y φ
→
L (F)(y)⊙ eY (y, 0)

=
∨

x=φ−1({y}) F(x)⊙ eY (φ(x), 0) ≤ 0.

(F2) Since

eY (φ(x1 ∗ x2), φ(x1) ⋆ φ(x2))⊙ eY (φ(x1) ⋆ φ(x2), z1 ⋆ z2)
≤ eY (φ(x1 ∗ x2), z1 ⋆ z2),

by the definition of φ→L (F)(yi) for i ∈ {1, 2} and (L4), there exist xi ∈ LY with
xi = φ−1(yi) such that

[φ→L (F)](z1)⊙ [φ→L (F)](z2)

=
(

∨

y1∈X φ
→
L (F)(y1)⊙ eY (y1, z1)

)

⊙
(

∨

y2∈X φ
→
L (F)(y2)⊙ eY (y2, z2)

)

=
(

∨

x1∈X F(x1)⊙ eY (φ(x1), z1)
)

⊙
(

∨

x2∈X F(x2)⊙ eY (φ(x2), z2)
)

≤
∨

x1,x2∈X

(

F(x1 ∗ x2)⊙ eY (φ(x1) ⋆ φ(x2), z1 ⋆ z2)
)

≤
∨

x1,x2∈X

(

F(x1 ∗ x2)⊙ eY (φ(x1 ∗ x2), z1 ⋆ z2)
)

≤ [φ→L (F)](z1 ⋆ z2)

(F3)

[φ→L (F)](y)⊙ eY (y, z) =
(

∨

w∈Y φ
→
L (F)(w)⊙ eY (w, y)

)

⊙ eY (y, z)

≤
∨

w∈Y φ
→
L (F)(w)⊙ eY (w, z) = [φ→L (F)](z).

Hence [φ→L (F)] is an (L, eY )-filter on X . Moreover, φ : (X,F) → (Y, [φ→L (F)])
is a filter preserving map from:

[φ→L (F)](φ(x)) =
∨

w∈Y φ
→
L (F)(w)⊙ eY (w, φ(x))

≥ φ→L (F)(φ(x))⊙ eY (φ(x), φ(x)) ≥ F(x).

Let φ : (X,F) → (Y,G) be a filter preserving map. For each y ∈ Y , we have

[φ→L (F)](y) =
∨

z∈Y φ
→
L (F)(z)⊙ eY (z, y)

≤
∨

z∈Y

(

∨

x∈φ−1({z})(F(x)⊙ eY (z, y))
)

≤
∨

φ(x)∈Y

(

G(φ(x))⊙ eY (φ(x), y)
)

≤ G(y).
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(2) Since φ is injective, φ−1(φ({x})) = {x},

F(x)⊙ eY (φ(x), 0) ≤ F(x)⊙
∨

z∈φ−1(φ({x})),w∈φ−1({0}) eX(z, w)
= F(x)⊙ eX(x, 0) ≤ F(0) = 0.

(3) Since φ is surjective, φ(φ−1({y})) = {y}. Thus φ→L (F) = [φ→L (F)] is an
(L, eX)-filter from:

[φ→L (F)](y) =
∨

z∈Y φ
→
L (F)(z)⊙ eY (z, y)

≤
∨

z∈Y

∨

x∈φ−1({z}),w∈φ−1({y}) F(x)⊙ eX(x, w)
≤

∨

w∈φ({y}) F(w)
= φ→L (F)(y),

[φ→L (F)](y) ≥ φ→L (F)(y)⊙ eY (y, y) = φ→L (F)(y).

(4) From the condition of (1), we have

[φ←L (G)](x)⊙ eX(φ(x), 0)
=

∨

w∈X(φ
←
L (G)(w)⊙ eX(w, x)⊙ eX(φ(x), 0))

≤
∨

w∈X(G(φ(w))⊙ eY (φ(w), φ(x))⊙ eY (φ(x), 0))
≤

∨

w∈X(G(φ(w))⊙ eY (φ(w), 0))
≤ G(0) = 0.

Hence [φ→L ([φ←L (G)])] exists.

[φ→L ([φ←L (G)])](y)
=

∨

z∈Y (φ
→
L ([φ←L (G)])(z)⊙ eX(z, y))

=
∨

x∈X

∨

x=φ−1({z})([φ
←
L (G)](x)⊙ eX(z, y))

=
∨

x∈X

∨

x=φ−1({z})(
∨

w∈X φ
←
L (G)(w)⊙ eX(w, x)⊙ eX(z, y))

=
∨

x∈X

∨

x=φ−1({z})(
∨

w∈X G(φ(w))⊙ eY (φ(w), φ(x))⊙ eY (φ(x), y))
=

∨

w∈X(G(φ(w))⊙ eY (φ(w), y))
≤ G(y).

Example 4.5 Let X = {0, 1
4
, 1
2
, 3
4
, 1} and Y = {0, 1

2
, 1} be sets, L = [0, 1]

the complete residuated lattice as in Example 3.6. Define functions Gi : Y →
[0, 1] as follows:

G1(y) =











1 if x = 1,
1
2
if x = 1

2
,

0 otherwise,
G2(x) =











1 if x = 1,
1
2
if x = 3

4

0 otherwise,

e0, e1 are fuzzy posets on X and Y as follows:

e0(x, y) =

{

1 if x ≤ y,

0 otherwise,
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and e1(x, y) = x→ y.

(1) Define a function φ : X → Y as follows:

φ(0) = 0, φ(
1

4
) = φ(

1

2
) =

1

2
, φ(

3

4
) = φ(1) = 1.

Then φ(x ⊙ y) ≤ φ(x) ⊙ φ(y) and φ−1 is an order-preserving relation. Let
F(x) = x be an ([0, 1], e1) filter on X with F(x) ⊙ e1(φ(x), 0) = 0. Then we
obtain an ([0, 1], e1) filter [φ

→
L (F)] = φ→L (F) on Y as follows:

[φ→L (F)](y) =











1 if y = 1,
1
2
if y = 1

2

0 if y = 0.

(2) Define a function ψ : X → Y as follows:

ψ(0) = ψ(
1

4
) = 0, ψ(

1

2
) = ψ(

3

4
) =

1

2
, ψ(1) = 1.

Then 1
2
= ψ(3

4
⊙ 3

4
) 6≤ ψ(3

4
)⊙ψ(3

4
) = 0. Let F(x) = x be an ([0, 1], e1) filter on

X with F(3
4
) ⊙ e1(ψ(

3
4
), 0) = 1

4
6= 0. Then ([0, 1], e1) filter [φ

→
L (F)] = ψ→L (F)

is not ([0, 1], e1) filter on Y as follows:

[ψ→L (F)](y) =











1 if y = 1,
3
4
if y = 1

2
1
4

if y = 0.

(3) Define an injective function ψ : Y → X as follows:

ψ(0) = 0, ψ(
1

2
) =

1

2
, ψ(1) = 1.

Define an ([0, 1], e1) filter G(x) = x. Then we obtain an ([0, 1], e1) filter
[ψ→L (G)](y) = y.

Example 4.6 Let X , Y , L = [0, 1], G1,Fi ,e0, e1 φ and ψ be as same in
Example 4.3.

(1) [φ→L ([φ←L (G1)])] is an (L, e0)-filter as

[φ→L ([φ←L (G1)])](y) =











1 if y = 1,
1
2
if y = 1

2
,

0 if y = 0.

(2) Since 3
4
= e1(1,

3
4
) 6≤ e1(φ(1), φ(

3
4
)) = e1(1,

1
2
) = 1

2
, then [φ→L ([φ←L (G1)])]

is not an (L, e1) filter such that

[φ→L ([φ←L (G1)])](y) =











1 if y = 1,
3
4
if y = 1

2
,

1
2
if y = 0.
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(3)

ψ→L (ψ←L (F1))(x) =











1 if x = 1,
1
2
if x = 1

2

0 otherwise.
ψ→L (ψ←L (F2))(x) =

{

1 if x = 1,
0 otherwise.

Then ψ→L (ψ←L (F1)) is not a (L, e1)-filter because

3

4
= ψ→L (ψ←L (F1))(1)⊙ e1(1,

3

4
) 6≤ ψ→L (ψ←L (F1))(

3

4
) = 0

But [ψ→L (ψ←L (F1))](x) = x = e1(1, x) ∨ (1
2
⊙ e1(

1
2
, x)) is an (L, e1)-filter with

[ψ→L (ψ←L (F1))] = F1. Moreover, [ψ→L (ψ←L (F2))] < F2.
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