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Abstract

We introduce the notion of ordered (L, e)-filters with fuzzy partially
order e on complete residuated lattice L. We define the images and
preimages of (L, e)-filters using Zadeh image and preimage operators.
We study the images and preimages of (L, e)-filters induced by functions.
We investigate their properties.
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1 Introduction

Hohle et al. [5,6] introduced the notion of L-filter on a complete quasi-monoidal
lattice ( including GL-monoid [4] ) L instead of a completely distributive lattice
([2-4]) as an extension of fuzzy filters [1,2]. The notion of L-filter facilitated to
study L-fuzzy topologies [3,5,6], L-fuzzy uniform spaces [5,6] and topological
structures [7].

In this paper, we define ordered (L, e)-filters with fuzzy partially order e on
complete residuated lattice L and investigate their properties. We consider the
Zadeh image operator ¢;" and the Zadeh preimage operator ¢j in a sense [§].
We investigate the images and preimages of (L, e)-filters induced by functions.

2 Preliminaries

Definition 2.1 [5,6,9] A triple (X, <, %) is called a complete residuated lat-
tice iff it satisfies the following properties:

(L1) (X, <,1,0) is a complete lattice where 1 is the universal upper bound
and 0 denotes the universal lower bound;



78 Yong Chan Kim and Jung Mi Ko

(L2) (X, *,1) is a commutative monoid,;
(L3) * is distributive over arbitrary joins, i.e.

(V @) xb=\/(a; *b).

el el

Example 2.2 [5,6,9] (1) Each frame (L, <, A) is a complete residuated lat-
tice.
(2) The unit interval with a left-continuous t-norm ¢, ([0,1],<,?), is a
complete residuated lattice.
(3) Define a binary operation * on [0, 1] by %y = max{0,x+y—1}. Then
([0,1], <, *) is a complete residuated lattice.

Let (L,<,®) be a complete residuated lattice. A order reversing map
¢: L — L defined by a® = a — 0 is called a strong negation if a®“ = a for each
a€ L.

In this paper, we assume (L, <, ®,°) is a complete residuated lattice with
a strong negation €.

Definition 2.3 [5,6,9] Let X be a set. A function ey : X x X — L is called
fuzzy partially order on X if it satisfies the following conditions:

(E1) ex(z,z) =1 forall z € X

(E2) ex(x,y) ©®ex(y, z) < ex(x,2), for all z,y,z € X,

(E3) if ex(z,y) = ex(y,x) =1, then x = y.

The pair (X, ex) is a fuzzy partially order set (simply, fuzzy poset).

Let (X, <, %) be a complete residuated lattice. A fuzzy poset (X,ex) is a
p-fuzzy poset if ex(x1,y1) ® ex(x2,ys) < ex(x1 * T2, y1 * yo) for each z;,y; € X
and ex(x,y) =1if z < y.

Lemma 2.4 [5,6,9] For each z,y,z,z;,y; € L, we define v — y = \/{z €
L|z®z<uy}. Then the following properties hold.
(D) Ify<z,(z0y)<(zo0z)andr —y<z—zandz—>x<y—x

)

) ® = (Nier ¥i) = Nier(z — ¥i)

) Vier i) =y = Nier(zi — ¥).

) = (Vier ¥i) = Vier(z — yi)

) (Nier i) = y = Vier(zi — ).

) Nier U5 = (Vier )¢ and Vier y§ = (Nier 4i)°-
J(xoy) mz=2x—>y—=2)=y— (x = 2).
)1 =z =ux.

0) If x <y, thenx —y=1.
DNx—yoly—z)<z—z

2) (21 = y1) © (22 = y2) < (11 O T2 = Y1 O Ya).
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Example 2.5 (1) We define amap e, : Lx L — Leg(z,y) =z —y =
V{z € L|z®z <y} Then (L,ey) is a p-fuzzy poset from Lemma 2.4 (10-12).

(2) We define a function epx : LY x LX — L as erx(f,9) = Npex(f(z) —
g(z)). Then (LX, e;x) is a p-fuzzy poset.

(3) If (X, ex) is a fuzzy poset and we define a function ey (z,y) = ex(y, z),
then (X, ex') is a fuzzy poset.

3  Ordered (L, e)-filters

Definition 3.1 Let (X, <,%) be a complete residuated lattice and ex a
fuzzy poset. A mapping F : X — L is called an ordered (L, ex)-filter (for
short, (L, ex)-filter) on X if it satisfies the following conditions:

(F1) F(0) =0 and F(1) =1,

(F2) F(xxy) > F(x) ® F(y), for each z,y € X,

(F3) F(x) ®@ex(z,y) < F(y).

The pair (X, F) is called an (L, ex)-filter space.

Let F; and F; be (L, e)-filters on X. We say JF; is finer than F; (or Fp is

coarser than JFi) iff Fo < Fj.

Example 3.2 (1) We define a fuzzy poset e (z,y) = x — y as in Example
2.5(1). Let F be an (L,ep)-filter on L. By (F3), since F(z) ® ex(z,0) <
F(0) = 0, we have F(x) < z° = x. Also, since z = F(1) @ er(1,2) < F(x),
we have F(z) = z.

(2) Since z < y iff ex(z,y) = 1, by (F3), If z < y, then F(z) < F(y).
Hence the above definition is an extension of Hohle et al. [14,15].

(3) Let (X, <,%) be a complete residuated lattice and (X, ex) a p-fuzzy
poset with ex(1,0) = 0. Then a mapping F : X — L defined by F(z) =
ex(1,x) is an (L, ex)-filter on X because

(F1) F(0) =ex(1,0) =0,F(1) = ex(1,1) =1,

(F2) Fzxy) = ex(L,zxy) > ex(1,2) ©ex(1,y) = F(x) © F(y).

(F3) F(z) @ ex(z,y) = ex(1,2) © ex(x,y) < ex(L,y) = F(y).

Theorem 3.3 Let (X, ex) be a p-fuzzy poset. A mapping F : X — L is an
(L, ex)-filter on X iff it satisfies the conditions (F'1),(F3) and

Flz=y) o Fr) < Fly)
where v =y =\V{z € X |z*xz <y}.

Proof
=y)) Oex(z*(z=1y),y)

F(
F =) > F(x) © Flr =y).

x* (x
(x*(x
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> Flr = (rxy)) © F(x)
> Fly) Oex(y,r = (zxy)) © F(r) = F(x) © F(y).

Theorem 3.4 Let (X, <,x) be a complete residuated lattice and (X, ex) a
p-fuzzy poset. If H : X — L is a function satisfying the following condition:
(C) H(1) =1 and for every finite index set K,

V GiexH(w:) © ex (*kickwi, 0) = 0.
K

We define a function Fy : LX — L as
Fu(x) = \/(@ieKH(fL"i)) O ex (*ickx®;, )

where the \/ is taken for every finite set K.
Then:
(1) Fy is an (L, ex)-filter on X,
(2) if H < F and F is an (L,ex)-filter on X, then Fy < F.

Proof. (1) (F1) By the condition (C), F%(1) =1 and F(0) =0
(F2) For each two finite index sets K and J,

Fu(w1) © F(xo)

= VK( Oiex H(yi)) © ex(x ieK?/iJl))

OV, ((@JGJH(ZJ)) eX( jeJZj,u”Cz))

< Vkus ((QieKH(yi)) © (©jesM(2))) © ex((riexys) * (*je25), T1 * Iz))
< Fy(my * x9).

(F3)
Fu(z) ©ex(z,y) = V(Oiek H(yi)) © ex (xiekyi, ©) @ ex(x,y) < Fu(y).

Thus, Fy is an (L, ex)-filter on X.
(2) For each finite index set K, we have

F(x) > F(riexr;) © ex(*iex i, T)
> OiexF(x;) © ex (kieg i, T)
> Oiex H(z:) © ex (*iexi, T).

Thus Fy < F.
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Definition 3.5 Let (X,F) and (Y,G) be two (L,ex) and (L,ey)-filter
spaces. Then a function ¢ : X — Y is said to be:

(1) an filter map iff G(y) < Vuep- 1({y}) F(x), foraly e Y,

(2) an filter preserving map ift F(z) < G(¢(z)) for all x € X.

(3) an ordered preserving map iff ex (x,y) < ey (p(x), d(x)) for all x,y € X.

(4) o' Y — X is an ordered preserving relation iff for all z,y € Y,

6Y($ay) < /\ 6X(aa b)
acs~t({z}),b€d~ 1 ({y})
Naturally, the composition of filter maps (resp. filter preserving maps) is

an filter map (resp. filter preserving map).

Example 3.6 Let X = {0,1,1,3/1} be a set, (L = [0,1],®) complete
residuated lattice with x Oy =(r+y—1)VO0andz -y =(1—x+y) AL
Define functions F; : X — [0, 1] as follows:

lif z=1, 1if x=1,
./_"1(.]7): %lf I:%, fg(l‘): —lf %’6{4,5
0 otherwise, 0 otherwise,

ep,e1: X x X —[0,1] as follows:

eo(r,y) = { 0 otherwise,

and ey (z,y) =z — y.
(1) Fy is an (L, eg)-filter but not an (L, e;)-filter because

= (A1) ©e(l, ))ﬁfl() 0.

Since Fi(z) ® e;(x,0) = 0, we obtain ]-";1( )=e(Lz)V(Eoed ) =ua

(2) Since 0 = .7:2( ©1) 2 F(3) ©F(2) = 4, Fo is neither an (L, eo)-filter
nor an (L, e;)-filter. Furthermore, it satlsﬁes the condition(C) of Theorem 3.4
because

1
2
)=0
Lol
2 Y72

1 1 1 1 1 ,
f2(§)®f2(§)®62(§®§70)_5%0716{071}
(3) Let X = {0,1,3,2,1} be aset. Define a function ¢ : X — Y as follows:
1 1 3 1
— $(=) = = o(2) ==, 6(1) = 1.
5(0) = 6(3) = 0, 6(3) = 6(0) = £,6(1)
Let G: Y — [0,1] be an ([0, 1], e;) filter as
1if y=1,
Gly) =1 zif y=3
0if y=0.
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Since F; and G are ([0,1],e) and ([0, 1],e;) filters, respectively and G(y) <
Vaoeo-1(qyh F1(x) and Fi(z) < G(d(x)), ¢ are filter map and filter preserving
map. Since ey(z,y) < e1(od(z),d(z)) for all z,y € X, ¢ : (X,e9) — (Y, e1)
is an order preserving map. Since 3 = e(1, ?1) 4 el(qb(l),é(%)) = 3, then

¢ : (X,e1) — (Y,e1) is not an order preserving map. Since 3 = e(3,0) £

er(¢(2),0) =1, for 2 € ¢7(3),0 € p7(0), then ¢ : (Y,e1) = (X, e1) is not

an order preserving relation.

4 The preimages and images of (L, e)-filters

In this section we consider the preimages and images of (L, ex )-filters.

Definition 4.1 Let ¢ : X — Y be a function, F an (L, ex)-filter on X and
G an (L, ey)-filter Y.

(1) The image of F is a function ¢’ (F) : Y — L defined by

=\V{F@) [z=¢"(1)}

(2) The preimage of G is a function ¢35 (G) : X — L defined by

o1, (9)(x) = G((x)).

(3) Let H : X — L be a function and = € X. We denote

\/H ®6Xy7>

yeX

Theorem 4.2 Let (X, <,x) and (Y, <,*) be complete residuated lattices.
Let ¢ : X — Y be an order preserving function with ¢(z xy) > ¢(z) * ¢(y),
#(0) = 0 and ¢(1) = 1, ex, ey p-fuzzy posets and G an (L, ey)-filter on Y.
Then:

(1) [¢5(9)] is the coarsest (L, ex)-filter for which ¢ : (X, [¢5(G)]) — (Y, G)
s a filter map.

(2) If ex(x,y) = ey (6(x), #(y)) for x,y € X, then [61 ()] = ¢1 ().
Proof. (1) (F1) is obvious.

(97 (9)](0) = Vuex 01 (9)(2) © ex(,0)
< Vaiex G(0(2)) © ey (o(x),0) < G(0) = 0.

(F2)
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(97 (9)(21) © 67 (G)](z2)
= V.1ex (01 (G)(21) © ex(21,71)) © Vsyex (01 (G)(22) © ex (22, 22))
= V., ex(G(0(21)) © ex(21,71)) © Voex(G(d(22)) © ex(z2, 22))
< Vyeex(G(9(21) * 9(22)) © ex (21 * 29, 71 % 22))
( (9(21) * d(22)) © ey (9(21) * P(22), (21 * 22)) < G(P(21 * 22)))
< \/y1 pex(G(0(21 % 22)) © ey ((z1 * 22), P(21 * T2)) < G(P(21 * 12))
= [¢7 (9)](w1 * x2).
(F3)
(97 (9)(x) © ex(z, 2)
= Vuwex (01 (G)(w) © ex(w,z) © ex(z, 2)
< Vwex (97 (9)(w) © ex(w, 2)) = [¢7 (9)](2)

Vaco 1 (uh 0L (9)(®) = Vaes1(qyp) Viex 01 (G)(2) © ex(z, 7)
> Vaes 1y 1 (G)(2) © ex(z,2) = G(y).

Let ¢ : (X, F) — (Y,G) be a filter mapii.e. G(y) < Voep1 (g F(2).

(97 (G(x) = V.ex 07 (G)(2) © ex(2,7)
= V.ex G(0(2)) © ex(z, )
< Vuwes1({s(x)p) F (W) © ex(w, z) < F(x).

(2) It follows from

(07 (9)](x)

1

<<

N

m

e

Q
o~
X

©)

Example 4.3 Let X = {O,i,%,i,l} and Y = {0, 2,1} be sets, (L =
[0,1], ®) complete residuated lattice as in Example 3.6. Define functions

G :Y —[0,1], Fi, F2 : X — [0, 1] as follows:

LI

0 otherwise, 0 otherwise.

lift y=1 lif z=1,
Gily) =14 3if y=3, Fa)==z Fz)=q 3if o=
eo, €1 are fuzzy posets on X and Y as follows:

eo(r,y) = { 0 otherwise,

and ej(z,y) =z — v.
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(1) Define a function ¢ : X — Y as follows:

6(0) = 6(7) = 0. 0(3) = 6(3) = 5:0(1) = L.

3 3 3 3
= ¢(Z O] Z) > ¢(Z) O] ¢(Z) =0.
Furthermore, eo(z,y) < eo(é(z), ¢(y)). Then [¢7 (G1)] = ¢7 (G1) is (L, eo)-
filters as

We have ¢(z © y) > ¢(z) © ¢(y), but not equality as follows:
1
2

Lif z=1,
[cbf(Gl)](:v){ it we{3]
0 if = e {50}

But ¢$(G1) is not a (L, e;)-filter because

S =0T G e e D) L6065 =5

4 2
But [¢7 (G1)](z) = ei(1,2) V(3 0e1(2,2) V(5 @ei(3,2)) is an (L, e;)-filter as
follows
1if z=1,
% if x= %,
6L (G)(x) = § 7if z=3,
i it z= i
4 D
0if x=0.

Since 2 = e1(1,3) £ e1(6(1),6(2)) = ex(1,3)
theorem need not be true.
(2) Define a function ¢ : Y — X as follows:

%, The converse of the above

$(0) =0, ¥(3) = 7, 0(1) = 1

2
Since e;(z,y) = ei(y(x), ¢(y)) for i € {0,1}, We obtain [¢7"(Fi)] = ¢p (F)
for i € {1,2} as follows;

1if y=1,
0 otherwise.

Yy
GEEND = Hitu=1 ) -
Y

Theorem 4.4 Let (X, <,x) and (Y, <,x) be complete residuated lattices.
Let ¢ : X =Y be a function with ¢(xz xy) < ¢(x) * ¢(y) with ¢(1) = 1 and
»(0) = 0, ex,ey p-fuzzy posets. Let F and G be (L,ex) and (L, ey)-filters,
respectively. Then we have the following properties.
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(1) If F(z) @ey(¢p(x),0) =0, then [¢p7 (F)] is the coarsest (L, ey )-filter for
which ¢ - (X, F) — (Y, [0 (F)]) is a filter preserving map.

(2) If ¢ is injective and ¢~ is order-preserving relation, |7 (F)] is an
(L, ex)-filter.

(3) If ¢ is surjective, ¢~ is order-preserving relation and F is an (L,ex)-
filter with F(x) ® ey (¢(x),0) = 0, then ¢ (F) is an (L, ex)-filter.

(4) If ¢ - X — Y s an order preserving map with ¢(x *y) = ¢(z) x ¢(y),
then (o7 ([o07 (G)])] is an (L, ey)-filter on Y with [¢7 ([¢1 (G)])] < G.

Proof. (1) (F1) Since ¢~'(1) = 1, [¢7(F)](1) = 1. By the assumption,
(67 (F)I(0) = Vyey o1/ (F)(y) ® ey (y,0)
= \/x:(z,ﬂ({y}) ]:(l’) ® 6y(¢(l’), O) S 0.
(F2) Since
ey (¢(x1 * T2), ¢(x1) * (22)) © ey (P(x1) * P(x2), 21 * 22)

< ey (o1 * 2), 21 * 22),

by the definition of ¢7" (F)(y;) for i € {1,2} and (L4), there exist z; € L* with
r; = ¢~ 1(y;) such that
(67 (P © 67 (P)](z2)
= (Viex 7 (F)W1) © ey (1,21)) © (Vynex 67 (F)(12) © ey (42, 22))
Varex F(1) © ey (6(21),21)) © (Vapex F(@2) © ex((w2), 20))
Vau, Xg (1% 73) © ey ($(21) * $(2), 21 % 22))
V )

pranex (F(21%23) © ey (d(a 1), 21 % 2,))

< (o7 (F)l(21x 22)
)
67 (FW) © ey (1,2) = (Vuey 67 (F)(w) © ey (w,y)) © ey (y, 2)
< Vuwey 07 (F)(w) © ey (w, z) = [¢7 (F)](2).
Hence [¢7(F)] is an (L, ey )-filter on X. Moreover, ¢ : (X, F) — (Y, [¢7 (F)])
is a filter preserving map from:
(67 (F)(d(2)) = Vuey 07 (F)(w) © ey (w, §(z))
> o7 (F)(o(x) © ey ((x), () > F(x).
Let ¢ : (X, F) — (Y,G) be a filter preserving map. For each y € Y, we have
[0 (F)(y) = V.ey o7 (F)(2) ©ex(z,y)
<Vecy (Vacoo1opy (F@) @ ex(2,9))

<Vawer (9(8(2) @ e (6(x),9))
< Q(y)-

VA VAN VAN

!
w

(
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(2) Since ¢ is injective, ¢~ (d({z})) = {z},

F(x) ©ey(d(),0) < F(2) O Viep1(o({a))weo— ({0} x (2, W)
= F(z) ®ex(z,0) < F(0)=0.

(3) Since ¢ is surjective, ¢(¢~'({y})) = {y}. Thus ¢7"(F) = [¢7 (F)] is an
(L, ex)-filter from:

(97 (F)(W) = Viey 07 (F)(2) ©ey(2,y)
< Viey Vaes 1({zpwes— () F () © ex(z, w)
< Vueoyy T (w)
= o1’ (F)(y),

[0 (F)](Y) = o1/ (F)y) © ex(y,y) = o1’ (F)(y)-
(4) From the condition of (1), we have
ex(

(97 (9)](z) ® ex(o(x),0)
= Vwex (07 (G )(w) ® ex(w,r) © ex(d(z),0))
< Vuwex(G(o(w)) © ey (¢p(w), d(x)) © ey (¢(z),0))
SVwex(g( (w)) ® ey (dp(w),0))
<g(0) =
Hence [¢7 ([¢7(G)])] exists
[or ([o1 (9)D](v)
= V.ev(or ([01 (9))(2) © ex(2,y))
= Vaex Va—g- 1({z})([ 7 (9)](2) ©®ex(z,9))
= Vaex Vazo1(12) Vuwex 01 (G)(w) © ex(w, z) © ex(z,9))
= Vaex Va—o-1({2}) (Vuwex G(9(w)) © ey (o(w), ¢(z)) © ey (d(x), y))
= Vuwex (G(d(w)) © ey (d(w), y))
<G(y).

Example 4.5 Let X = {0, i, %, i, 1} and Y = {0, 2 5,1} be sets, L = [0, 1]

the complete residuated lattice as in Example 3.6. Define functions G; : ¥ —
0, 1] as follows:

Lif 2 =1, Lif z=1,
Gi(y) =9 3if z=13, Go(a)=1 3if z=

0 otherwise, 0 otherwise,

>

eg, €1 are fuzzy posets on X and Y as follows:

] 1it 2 <y,
colz,y) = { 0 otherwise,
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and ey (z,y) =z — y.
(1) Define a function ¢ : X — Y as follows:

1 1 1 .3
6(0) = 0,6(7) = 6(3) = 5,603 = 6(1) = 1.
Then ¢(z © y) < ¢(x) © ¢(y) and ¢! is an order-preserving relation. Let
F(x) = z be an ([0,1],¢;) filter on X with F(x) ® e1(¢(z),0) = 0. Then we
obtain an ([0, 1], e;) filter [¢7" (F)] = ¢/ (F) on Y as follows:

1if y=1,
[0 (F)l(y) = { pif y=3
0 if y=0.
(2) Define a function ¢ : X — Y as follows:
1 1 3 1
$(0) = 0(7) = 0,6(3) =) = 5. 0(1) = 1.
Then 1 =¢(303) £ ¢(2)©Y(2) = 0. Let F(x) =z be an ([0,1], e;) filter on
X with F(3) @ ex(¥(3),0) = § # 0. Then ([0, 1], e) filter [¢7 (F)] = vy’ (F)
is not ([0, 1], e1) ﬁlter on Y as follows:
1if y=1,
W (F)lly) = { 7if y=3
i if y=0.

(3) Define an injective function ¢ : Y — X as follows:

9(0) =0, ¥(3) = 3. 4(1) =
Define an ([0,1],¢;) filter G(z) = x. Then we obtain an ([0,1],e;) filter
W (9)y) =y

Example 4.6 Let X, Y, L = [0,1], G, F; ,e0,e1 ¢ and ¢ be as same in
Example 4.3.
(1) o7 ([¢1 (G1)])] is an (L, eq)-filter as

lif y=1,
[0 (91 (G))D](y) { sif y=3,
0if y=0.

(2) Since % = e(1, %) y.S 61(¢(1)7¢(%)) = ei(1, %) = %7 then [¢7 ([¢7 (G1)])]
is not an (L, e;) filter such that

—
=

Ol

o7 ([07 (GVD](Y) = {

SIS
- .

e e
[T

—e e
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(3)

Lif =1,

0 otherwise. 0 otherwise.

Then ¢’ (¢35 (F1)) is not a (L, ey )-filter because

3

— U W)W @a(L]) £ 6 W (F)) =0

3

4
(_
L

But [¢7 (¥5 (F1)](z) = z = ei(l,2) V (2 © e1(3, 7)) is an (L, e;)-filter with
Wi (W (F1))] = F1. Moreover, [ (47 (F2))] <
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