DETERMINATION OF GENDER USING CONDYLAR HEIGHT AND CORONOID HEIGHT – AN ORTHOPANTOMOGRAPHIC STUDY

Jyothsna M 1
Ranjith K 2
Sarat G 3
Vajra Madhuri 4
Anuradha Ch 5

1 Department of Oral Pathology, 4 Department of Periodontics, 5 Department of Oral Medicine and Radiology, Government Dental College and Hospital, Vijayawada, Andhra pradesh.
2 Department of Oral Medicine and Radiology, Drs Sudha and Nageswara Rao Siddhartha Institute of Dental Sciences, Chinnoutpally, Gannavaram, Vijayawada.

ABSTRACT: BACKGROUND: Identification of gender is important in forensic science and anthropology. When entire skull is not available for analysis, mandible may play a vital role in sex determination as it is the strongest bone that resists damage and disintegration. Aims and Objectives: To determine the efficacy of condylar height and coronoid height of mandible for sex determination using orthopantomographs and to compare and determine the most reliable parameter for sex determination. Materials and methods: This study was conducted using digital panoramic images of 100 each in both genders. The images captured were viewed on Kodak software and were subjected to measure the condylar and coronoid heights both on left and right side using Kodak dental imaging software. The data was entered into microsoft excel sheet and statistical analysis was done. Results: Descriptive statistics for condylar and coronoid heights on the right and left sides of mandible in both males and females were analyzed. A statistical significance of P < 0.001 has been demonstrated for all the variables. All variables showed increased measurements in males than in females. The accuracy of sex determination for condylar height is 82.5% on right side and 78% on left side and for coronoid height it is 74% on right side and 73% on left side. Conclusion: The parameters such as condylar height and coronoid height using orthopantomographs are reliable in gender determination and the condylar height of the right side is the best parameter in gender determination. KEYWORDS: Digital orthopantomogram; condylar height; coronoid height

INTRODUCTION

Every human has their own facial and external features which help in recognizing as a male or a female. The visual recognition and identification of an individual is difficult during natural disasters like earthquakes, tsunamis like events, floods and man-made disasters such as transport accidents, bombings and other terrorist activities. In such conditions, a scientific technique is necessary for identification of a person. Such scientific or primary methods include comparison of fingerprint patterns, medical and dental evidence and analysis of deoxyribonucleic acid (DNA). Among human bones, the pelvis and skull are the most reliable source for gender determination. It is possible to determine gender and age quite readily from the remains, including the cranial structures and teeth. Evidence of personal habits are occasionally present in the dentition. Gender of an unknown individual can be determined based on the data from the morphology and metric features of skull and mandible, soft tissues, as well as by DNA analysis of teeth. Skull is the most dimorphic and easily sexed portion of skeleton after pelvis, providing accuracy up to 92%. But in cases where intact skull is not found, mandible may play a vital role in sex determination as it is the most dimorphic, largest, strongest and mobile bone of skull. Presence of a dense layer of compact bone makes it very durable, and hence remains well preserved than many other bones. Dimorphism in mandible is reflected in its shape and size. Its morphological features show changes with reference to age, sex and race. Male bones are generally bigger and more robust than female bones. Greatest morphological changes showing the sexual dimorphism in the mandible are particularly seen in the mandibular condyle and ramius than the body of the mandible.

Panoramic radiography is a simplified extraoral radiographic technique which visualizes the entire maxillo-mandibular region, temporo-mandibular joints and associated structures on a single film which gives a panoramic or bird’s eye view of the jaws. Panoramic imaging has become a popular and important diagnostic tool since its introduction in the 1950s. It is being used for...
Considering these advances, the present study aims to assess the accuracy of sex determination using condylar height and coronoid height with orthopantomographs of known age and sex individuals.

Aims and objectives

A total of 200 patients were included in the study. Orthopantomographs were taken for these patients to calculate condylar height and coronoid height.

1. To determine the efficacy of condylar height of mandible for sex determination using orthopantomographs.

2. To determine the efficacy of coronoid height of mandible for sex determination using orthopantomographs.

3. To compare and determine the most reliable parameter for sex determination.

Materials and methods

Source of the data:

The study sample comprised of patients reporting to the outpatient department with routine dental problems. The patients were provided a detailed background of the intended procedure and enquiry was made about their willingness to participate in the study. Only those patients who gave consent to take part in the study were included.
Inclusion criteria:

Patients in the age group of 20 to 60 years of both the genders were included in the study. Ideal orthopantomographs of patients with complete dentition were considered.

Exclusion criteria:

Subjects who exhibited developmental disturbances, deformities, fractures or pathologies involving the mandible on clinical or radiographic examination were not considered for inclusion in the sample.

Sample distribution: A total of 200 subjects aged 20-60 years were divided into 2 groups. Group I includes 100 female subjects and group II includes 100 male subjects.

Technique of radiography:

Procedure: The subject was seated comfortably in the dental chair and his/her oral cavity was thoroughly examined with special attention to rule out the conditions mentioned in the exclusion criteria. Subjects having all the maxillary and mandibular teeth were selected. Jewellery and other artefact-causing objects were removed; for example nose rings, ear rings, chain, eye glasses etc. The patient’s identification number, sex and date were recorded.

The exposure parameters were set according to the patient’s size. The patient was positioned and the image was taken. The digital images captured were viewed on Kodak software and measurements were recorded. Images that are properly exposed with no errors and high image clarity were chosen for the study. The orthopantomogram images were subjected to measurements using Kodak dental imaging software.

Method for measuring the parameters:

To ensure the accuracy and the reproducibility of the technique, reference points were made on the orthopantomogram for measuring the parameters given below.

Condylar height: Height of the ramus of the mandible from the most superior point on the mandibular condyle to the tubercle, or most protruding portion of the inferior border of the ramus.

Coronoid height: Distance from coronoid to the most protruding portion of the inferior border of the ramus.

Results

The study included a total sample of 200 subjects having all maxillary teeth, mandibular teeth for whom orthopantomographs were taken. They are divided into two groups based on the sex. Group I included total of 100 females with the age range of 20 to 60 years. Group II included total of 100 males with age range of 20 to 60 years. Age and sex distribution of individuals are listed in Table 1.

Table 1. Demographic information of the sample

<table>
<thead>
<tr>
<th>Group</th>
<th>Age range</th>
<th>sex</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 – 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group I</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Group II</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Statistical analysis

Data were entered in MS EXCEL and analyzed in SPSS V22. Descriptive statistics were represented in the form of Mean and SD. t-test was applied to find the significance. P<0.05 was considered as statistically significant. Binary logistic regression was fitted to estimate the gender. Cutt-off values were calculated.

The mean right condylar height was 61.32 in females, whereas in males it was 68.04. The mean right condylar height between male and female was showing statistical significance. (Table – 2)

The mean left condylar height was 61.74 in females and in males it was 67.74. left condylar height between male and female was showing statistical significance. (Table – 3)

The mean right coronoid height was 52.79 in females, whereas in males it was 58.33. The mean right coronoid height between male and female was showing statistical significance. (Table – 4)

The mean left coronoid height was 52.78 in females, whereas in males it was 58.48. The mean left coronoid height between male and female was showing statistical significance. (Table – 5)

The Cutt-off value of right condylar height was 64.56 and 82.5% of the subject’s gender was predicted correctly by using right condylar height variable. (Table – 6) and

The Cutt-off value of left condylar height was 64.69. 78% of the subject’s gender was predicted correctly by using left condylar height variable. (Table – 7)

The Cutt-off value of right coronoid height was 55.43. 74% of the subject’s gender was predicted correctly by using right coronoid height variable. (Table – 8)

The Cutt-off value of left coronoid height was 55.44. 73% of the subject’s gender was predicted correctly by using left coronoid height variable. (Table – 9)
Female condylar height was found to be significant in gender determination. The mean condylar height of left side in females is found to be 61.74 ± 3.74mm with a maximum condylar height of 69.7mm and a minimum condylar height of 56.5mm whereas in males the mean condylar height of left side is 67.74 ± 4.34mm with maximum and minimum condylar height as 77.7mm and 56.5mm respectively (Table 3). The left condylar height was also found to be highly significant in gender determination.

In a study done by Rinkiet al. on orthopantomographs they found that the condylar height was found to be statistically highly significant and the mean value in males and females are 66.78 ± 5.47 mm and 59.99 ± 5.07 mm which was almost similar to that of the present study. Similar findings were noticed in a study done by Sairam et al. comparing the different mandibular measurements the condylar height was found to be significant in gender determination with mean in males and females being 65.01mm and 59.46mm on right side and 65.71mm and 59.65mm on left side. The present study has shown the similar results to that of a study done by Samatha K et al. the condylar height was found to be significant and the mean value for males is 65.34mm and females is 61.69mm. In a study done by Saraswathi G et al. on CBCT images of 50 male and 50 female patients the mean condylar height is found to be 65.79mm in males and 61.80mm in females. These findings conclude that the height of the condyle can be the best parameter.

The maximum condylar height in females on the right side is found to be 61.9mm with a minimum height of 42.8mm. The mean condylar height in females is found to be 52.79 ± 3.97mm and in males, the maximum and minimum condylar height is found to be 69.2mm and 47.0mm with a mean value of 58.33 ± 4.77 mm (Table 4). The coronoid height of the right side also showed a statistically significant difference in determining sex. The maximum coronoid height on the left side is 62.0 mm in females and 69.4 mm in males. The minimum coronoid height is 42.5 mm in females and 47.2 mm in males respectively (Table 5). The mean coronoid height is 52.78 ± 3.92 mm in females which is lesser than that of males 58.48 ± 5.13 mm and is found to be statistically significant in determination of gender.

In a study done on orthopantomographs by Rinki et al. with a mean value of coronoid height in males and females is 62.28 ± 5.41 mm and 56.88 ± 4.80 mm which was found to be highly significant. The similar findings were obtained in a study done by Sairam et al. comparing the different mandibular measurements in which the coronoid height was found to be significant in gender determination with mean in males and females is 57.61mm and 53.15mm on right side and 58.52mm and 53.40mm on left side. In a study done by Samatha K et al. the coronoid height was found to be non-significant and mean score for males is 57.85mm and 55mm in females which was in contrast to the present

The mandible is the strongest bone in the human body and persists in well preserved state longer than any bone. The different genetic predisposition in males and females during development is responsible for the sexual dimorphism. Males also have a larger muscle mass that apply greater mechanical forces on the mandible compared to that in females. Young and adult human males have a significantly larger bite forces than females which could be attributed to the larger muscle mass in males. An increased muscle mass affects the facial morphology and thus the differential muscle mass in males and females as a result of genetics could contribute to the sexual dimorphism. This could be an important differentiating factor that causes sexual dimorphism. The large muscle mass of the temporalis may explain the elongated coronoid process in the mandibular morphology of males.

The accuracy of panoramic radiography in providing anatomic measurements has been recognized. The main advantages of panoramic images are their broad coverage, low radiation dose, and less time required for image acquisition. Furthermore, the contrast and brightness enhancement and enlargement of images provide an accurate and reproducible method of measuring the chosen points. The limitations of this technique are magnification and geometric distortion, however, the vertical dimension in contrast to the horizontal dimension is altered less. Panoramic radiographic technique remains as quite sensitive to positioning errors because of relatively narrow image layer.

In the present study a total of 200 ideal orthopantomographs were included in the age range of 20 to 60 years which corresponded to 100 males and 100 females having a complete set of natural teeth excluding the presence or absence of the third molar. The measurements of the condylar height and coronoid height, were measured using Kodak dental imaging software. The measurements were analyzed with SPSS software version 22.

The maximum condylar height in females on the right side in this study is 70.9mm and the minimum condylar height is 51.8mm with a mean of 61.32 ± 3.54mm. The maximum and minimum condylar height in males is 77.6mm and 56.5mm and the mean condylar height on the right side is 68.04 ± 4.20mm (Table 2). The role of condylar height of right side is found to be highly significant in gender determination. The mean condylar height of left side in females is found to be 61.74 ± 3.74mm with a maximum condylar height of 69.7mm and a minimum height of 56.5mm whereas in males the mean condylar height of left side is 67.74 ± 4.34mm with maximum and minimum condylar height as 77.7mm and 56.5mm respectively (Table 3). The left condylar height was also found to be highly significant in gender determination.
Table 2: Comparison of condylar height of right side with gender

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sex</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>SD</th>
<th>t-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condylar height</td>
<td>Female</td>
<td>00</td>
<td>51.8</td>
<td>70.9</td>
<td>61.32</td>
<td>3.54</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>00</td>
<td>56.5</td>
<td>77.6</td>
<td>68.04</td>
<td>4.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Comparison of condylar height of left side with gender

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sex</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>SD</th>
<th>t-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condylar height</td>
<td>Female</td>
<td>100</td>
<td>53.9</td>
<td>69.7</td>
<td>61.74</td>
<td>3.74</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>100</td>
<td>47.0</td>
<td>69.2</td>
<td>58.33</td>
<td>4.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Comparison of coronoid height of right side with gender

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sex</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>SD</th>
<th>t-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronoid height</td>
<td>Female</td>
<td>100</td>
<td>42.8</td>
<td>61.9</td>
<td>52.79</td>
<td>3.97</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>100</td>
<td>47.2</td>
<td>69.4</td>
<td>58.48</td>
<td>5.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Comparison of coronoid height of left side with gender

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sex</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>SD</th>
<th>t-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronoid height</td>
<td>Female</td>
<td>100</td>
<td>42.5</td>
<td>62.0</td>
<td>52.78</td>
<td>3.92</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>100</td>
<td>47.2</td>
<td>69.4</td>
<td>58.48</td>
<td>5.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Comparison of prediction percentage of right condylar height with gender

<table>
<thead>
<tr>
<th>Condylar height</th>
<th>Original</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>62</td>
<td>18</td>
<td>82</td>
</tr>
<tr>
<td>Male</td>
<td>17</td>
<td>83</td>
<td>83</td>
</tr>
</tbody>
</table>

Overall predicted correct % = 82.5

Table 7: Comparison of prediction percentage of left condylar height with gender

<table>
<thead>
<tr>
<th>Condylar height</th>
<th>Original</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>77</td>
<td>23</td>
<td>77</td>
</tr>
<tr>
<td>Male</td>
<td>21</td>
<td>79</td>
<td>79</td>
</tr>
</tbody>
</table>

Overall predicted correct % = 78

Table 8: Comparison of prediction percentage of right coronoid height with gender

<table>
<thead>
<tr>
<th>Coronoid height</th>
<th>Original</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>76</td>
<td>24</td>
<td>76</td>
</tr>
<tr>
<td>Male</td>
<td>28</td>
<td>12</td>
<td>72</td>
</tr>
</tbody>
</table>

Overall predicted correct % = 74

Table 9: Comparison of prediction percentage of left coronoid height with gender

<table>
<thead>
<tr>
<th>Coronoid height</th>
<th>Original</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>79</td>
<td>21</td>
<td>79</td>
</tr>
<tr>
<td>Male</td>
<td>33</td>
<td>67</td>
<td>67</td>
</tr>
</tbody>
</table>

Overall predicted correct % = 73
study. In a study done by Saraswathi et al., on CBCT images of 50 male and 50 female patients, the mean coronoid height is found to be 59.37mm in males and 56.40mm in females which was similar to the results of the present study.

The limitation of the study is that it would have been better if the present study used CBCT as there is less distortion and artifacts but was not considered as the radiation dose to the patient is high. The relation between age group and gender determination was not done in our study as the subjects with complete dentition have been considered for the study.

CONCLUSION

Mandible can be considered as a beneficial tool in gender determination since it possesses resistance to damage and disintegration process. It is considered the second most sexually dimorphic bone after the pelvis. The orthopantomograph is widely used for obtaining a comprehensive overview of the maxillofacial complex. The parameters considered in the current study were condylar height, coronoid height of both sides. The measurements were done using Kodak dental imaging software. This study concluded that the parameters such as condylar height and coronoid height using orthopantomographs are reliable in gender determination and condylar height of the right side is the best parameter in gender determination.

References

Corresponding Author

Dr S. Vajra Madhuri, M.D.S, Associate professor, Department of Periodontics, Government Dental College & Hospital, Vijayawada
Email ID –madhuri.songa@gmail.com
Mobile no – 9885333771