weak ϕ-contraction on partial metric spaces and existence of fixed points in partially ordered sets

ERDAL KARAPINAR

ATILIM UNIVERSITY
DEPARTMENT OF MATHEMATICS
İNCEK, 06836, ANKARA, TURKEY
e-mail:erdalkarapinar@yahoo.com
e-mail:ekarapinar@atilim.edu.tr

Abstract

In this manuscript, the notion of weak ϕ-contraction is considered on partial metric space. It is shown that a self mapping T on a complete partial metric space X has a fixed point if they satisfied weak ϕ-contraction.

Mathematics Subject Classification: 47H10,54H25
Keywords: Partial metric space, weak ϕ-contraction, fixed point theory

1 Introduction and Preliminaries

In 1992, Matthews [1, 2] introduced the notion of a partial metric space which is a generalization of usual metric spaces in which $d(x, x)$ are no longer necessarily zero. After this remarkable contribution, many authors focused on partial metric spaces and its topological properties (See e.g. [3, 4, 5, 6, 16])

A partial metric space (See e.g.[1, 2]) is a pair $\left(X, p: S \times S \rightarrow \mathbb{R}^{+}\right)$(where \mathbb{R}^{+}denotes the set of all non negative real numbers) such that
(PM1) $p(x, y)=p(y, x)$ (symmetry)
(PM2) If $p(x, x)=p(x, y)=p(y, y)$ then $x=y$ (equality)
(PM3) $p(x, x) \leq p(x, y)$ (small self-distances)
(PM4) $p(x, z)+p(y, y) \leq p(x, y)+p(y, z)$ (triangularity)
for all $x, y, z \in X$. We use the abbreviation PMS for the partial metric space (X, p).

Notice that for a partial metric p on X, the function $d_{p}: X \times X \rightarrow \mathbb{R}^{+}$ given by

$$
\begin{equation*}
d_{p}(x, y)=2 p(x, y)-p(x, x)-p(y, y) \tag{1}
\end{equation*}
$$

is a (usual) metric on X. Observe that each partial metric p on X generates a T_{0} topology τ_{p} on X with a base of the family open of p-balls $\left\{B_{p}(x, \varepsilon)\right.$: $x \in X, \varepsilon>0\}$, where $B_{p}(x, \varepsilon)=\{y \in X: p(x, y)<p(x, x)+\varepsilon\}$ for all $x \in X$ and $\varepsilon>0$. Similarly, closed p-ball is defined as $B_{p}[x, \varepsilon]=\{y \in X: p(x, y) \leq$ $p(x, x)+\varepsilon\}$

Definition 1.1 (See e.g.[1, 2, 6])
(i) A sequence $\left\{x_{n}\right\}$ in a PMS (X, p) converges to $x \in X$ if and only if $p(x, x)=\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)$,
(ii) a sequence $\left\{x_{n}\right\}$ in a PMS (X, p) is called a Cauchy if and only if $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ exists (and finite),
(iii) A PMS (X, p) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges, with respect to τ_{p}, to a point $x \in X$ such that $p(x, x)=$ $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$.
(iv) A mapping $f: X \rightarrow X$ is said to be continuous at $x_{0} \in X$, if for every $\varepsilon>0$, there exists $\delta>0$ such that $f\left(B\left(x_{0}, \delta\right)\right) \subset B\left(f\left(x_{0}\right), \varepsilon\right)$.

Lemma 1.2 (See e.g.[1, 2, 6])
(A) A sequence $\left\{x_{n}\right\}$ is Cauchy in a PMS (X, p) if and only if $\left\{x_{n}\right\}$ is Cauchy in a metric space $\left(X, d_{p}\right)$,
(B) A PMS (X, p) is complete if and only if a metric space $\left(X, d_{p}\right)$ is complete. Moreover,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{p}\left(x, x_{n}\right)=0 \Leftrightarrow p(x, x)=\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right) \tag{2}
\end{equation*}
$$

Boyd and Wong [7] introduced the notion of Φ-contraction: a self mapping T on a metric space X is called Φ-contraction if there exists an upper semicontinuous function $\Phi:[0, \infty) \rightarrow[0, \infty)$ such that

$$
d(T x, T y) \leq \Phi(d(x, y)) \quad \text { for all } x, y \in X
$$

Alber and Guerre-Delabriere [8], generalized the notion of Φ-contraction by defining the notion of weak ϕ-contraction for Hilbert spaces: A self mapping
T on a metric space X is called weak ϕ-contraction if $\phi:[0, \infty) \rightarrow[0, \infty)$ is a strictly increasing map with $\phi(0)=0$ and

$$
d(T x, T y) \leq d(x, y)-\phi(d(x, y)), \text { for all } x, y \in X
$$

They also proved the existence of fixed points in Hilbert spaces. I one replaces Hilbert spaces with an arbitrary Banach spaces [8] still we have fixed points(See e.g. [9]). We should note that for a lower semi-continuous mapping ϕ, the function $\Phi(u)=u-\phi(u)$ coincides with Boyd and Wong types.

In fixed point theory, Φ-contraction and weak ϕ-contraction have been studied by many authors, (See e.g., $10,11,12,13,14]$, also [15]). In this manuscript, by using weak ϕ-contraction on a complete partial metric space we obtain a unique fixed point.

2 Main Results

Definition 2.1 (cf. [14]) Let (X, \preceq) be a partially ordered set and (X, p) a complete partial metric space. An operator $T: X \rightarrow X$ is called a weak ϕ contraction if there exists a continuous, non-decreasing function $\phi:[0, \infty) \rightarrow$ $[0, \infty)$ with $\phi(t)>0$ for $t \in(0, \infty)$ and $\phi(0)=0$, such that

$$
\begin{equation*}
p(T x, T y) \leq p(x, y)-\phi(p(x, y)) \tag{3}
\end{equation*}
$$

for any $x, y \in X$ with $x \preceq y$.
Theorem 2.2 Let (X, \preceq) be a partially ordered set and (X, p) a complete partial metric space. Suppose that $T: X \rightarrow X$ is nondecreasing, continuous and weak ϕ-contraction. If there exists an $x_{0} \in X$ with $x_{0} \preceq T x_{0}$, T has a unique fixed point.

Proof. Let $x_{0} \in X$ and set $x_{n+1}=T x_{n}$. Notice that, if $x_{n}=x_{n+1}$ for any $n \geq 0$, then obviously T has a fixed point. Thus, suppose $x_{n} \neq x_{n+1}$ for any $n \geq 0$. Since $x_{0} \preceq T x_{0}$, then

$$
\begin{equation*}
x_{0} \preceq x_{1} \preceq \cdots \preceq x_{n} \preceq x_{n+1} \preceq \cdots \tag{4}
\end{equation*}
$$

Due to (3), we have

$$
p\left(x_{n+1}, x_{n+2}\right)=p\left(T x_{n}, T x_{n+1}\right) \leq p\left(x_{n}, x_{n+1}\right)-\phi\left(p\left(x_{n}, x_{n+1}\right)\right) .
$$

Define $t_{n}=p\left(x_{n}, x_{n+1}\right)$.
Then one can obtain

$$
\begin{equation*}
t_{n+1} \leq t_{n}-\phi\left(t_{n}\right) \leq t_{n} \tag{5}
\end{equation*}
$$

which implies that $\left\{t_{n}\right\}$ is a non-negative non-increasing sequence. Hence, $\left\{t_{n}\right\}$ converges to L where $L \geq 0$. So there are two cases: $L>0$ or $L=0$. Assume that $L>0$. Regarding that ϕ is non-decreasing, we get $0<\phi(L) \leq \phi\left(t_{n}\right)$. Due to (5), we have $t_{n+1} \leq t_{n}-\phi\left(t_{n}\right) \leq t_{n}-\phi(L)$ and so

$$
t_{n+2} \leq t_{n+1}-\phi\left(t_{n+1}\right) \leq t_{n}-\phi\left(t_{n}\right)-\phi\left(t_{n+1}\right) \leq t_{n}-2 \phi(L) .
$$

Inductively we obtain $t_{n+k} \leq t_{n}-k \phi(L)$ which is a contradiction for large enough $k \in \mathbb{N}$. Hence we have $L=0$. Thus, we have $\lim _{n \rightarrow \infty} p\left(x_{n+1}, x_{n}\right)=0$.

Now, we show that $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, p). For this purpose, define $s_{n}=\sup \left\{p\left(x_{i}, x_{j}\right): i, j \geq n\right\}$. It is clear that the sequence $\left\{s_{n}\right\}$ is decreasing. If $\lim _{n \rightarrow \infty} s_{n}=0$, then $\left\{x_{n}\right\}$ is a Cauchy sequence. So consider the other case: Suppose $\lim _{n \rightarrow \infty} s_{n}=s>0$. One can choose ε small enough (e.g. $\varepsilon<\frac{s}{16}$) and a natural number N such that

$$
\begin{equation*}
p\left(x_{n}, x_{n+1}\right)<\varepsilon, \text { and } s_{n}<s+\varepsilon, \text { for all } n \geq N . \tag{6}
\end{equation*}
$$

Regarding the definition of s_{N+1}, there exist $m, n \geq N+1$ such that

$$
\begin{equation*}
s-\varepsilon<s_{n}-\varepsilon<p\left(x_{m}, x_{n}\right) . \tag{7}
\end{equation*}
$$

By triangle inequality we observe that

$$
\begin{gather*}
p\left(x_{n}, x_{m}\right) \leq p\left(x_{n}, x_{n-1}\right)+p\left(x_{n-1}, x_{m}\right)-p\left(x_{n-1}, x_{n-1}\right) \tag{8}\\
p\left(x_{n}, x_{m}\right) \leq p\left(x_{n}, x_{m-1}\right)+p\left(x_{m-1}, x_{m}\right)-p\left(x_{m-1}, x_{m-1}\right) \tag{9}\\
p\left(x_{n-1}, x_{m}\right) \leq p\left(x_{n-1}, x_{m-1}\right)+p\left(x_{m-1}, x_{m}\right)-p\left(x_{m-1}, x_{m-1}\right) \tag{10}
\end{gather*}
$$

Due to (7) and (6) the expression (8) and (9) yield that

$$
\begin{equation*}
s-2 \varepsilon<p\left(x_{n-1}, x_{m}\right), \quad \text { and } s-2 \varepsilon<p\left(x_{n}, x_{m-1}\right) \tag{11}
\end{equation*}
$$

Combining (10) and (11), we get that

$$
\begin{equation*}
s-3 \varepsilon<p\left(x_{n-1}, x_{m-1}\right) . \tag{12}
\end{equation*}
$$

Thus,

$$
\begin{align*}
p\left(x_{n}, x_{m}\right) & =p\left(T x_{n-1}, T x_{m-1}\right) \leq p\left(x_{n-1}, x_{m-1}\right)-\phi\left(p\left(x_{n-1}, x_{m-1}\right)\right) \\
& \leq p\left(x_{n-1}, x_{m-1}\right)-\phi(s) \tag{13}
\end{align*}
$$

Regarding (7) and (12), the expression (13) implies that $s_{N+1}<s_{N}-\phi(s)$ for small enough ε. It is impossible. Hence $s=0$. Notice that

$$
\begin{equation*}
d_{p}\left(x_{n}, x_{m}\right)=2 p\left(x_{n}, x_{m}\right)-p\left(x_{n-1}, x_{n-1}\right)-\phi\left(p\left(x_{m-1}, x_{m-1}\right)\right) \tag{14}
\end{equation*}
$$

Since $s=0$, then $d_{p}\left(x_{n}, x_{m}\right) \longrightarrow 0$ Therefore, the sequence $\left\{x_{n}\right\}$ is Cauchy in $\left(X, d_{p}\right)$. Since (X, p) is complete, by Lemma $2\left(X, d_{p}\right)$ is complete. and the sequence $\left\{x_{n}\right\}$ is convergent in X, say $z \in X$. Again by Lemma 2,

$$
\begin{equation*}
p(z, z)=\lim _{n \rightarrow \infty} p\left(x_{n}, z\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right) \tag{15}
\end{equation*}
$$

Since $s=0$, then by (15) we have $p(z, z)=0$. We assert that $T z=z$. Due to (PM4), we have

$$
\begin{align*}
p(T z, z) & \leq p\left(T z, T x_{n}\right)+p\left(x_{n+1}, z\right)-p\left(x_{n+1}, x_{n+1}\right) \tag{16}\\
& \leq p\left(z, x_{n}\right)-\phi\left(p\left(z, x_{n}\right)\right)+p\left(x_{n+1}, z\right)-p\left(x_{n+1}, x_{n+1}\right)
\end{align*}
$$

Letting $n \rightarrow \infty$ and regarding the continuity of ϕ, then (16) yields that $p(T z, z) \leq 0$. Hence $T z=z$.

Now we show z is unique fixed point of T. Assume the contrary, that is, there exists $w \in X$ such that $z \neq w$ and $w=T w$.

$$
p(z, w)=p(T z, T w) \leq p(z, w)-\phi(p(z, w))
$$

which is a contradiction. Thus z is a unique fixed point of T.
Theorem 2.3 Let (X, \preceq) be a partially ordered set and (X, p) a complete partial metric space. Suppose that $\phi:[0, \infty) \rightarrow[0, \infty)$ is a continuous, nondecreasing function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(t)>0$ for $t \in(0, \infty)$ and $\phi(0)=0$. Suppose also that $T: X \rightarrow X$ is nondecreasing and satisfying

$$
\begin{equation*}
p(T x, T y) \leq p(x, y)-\phi(p(x, y)) \tag{17}
\end{equation*}
$$

for any $x, y \in X$ with $x \prec$ (that is, $x \preceq y$ and $x \neq y$). Moreover the following condition is hold:

$$
\begin{equation*}
\text { If }\left\{x_{n}\right\} \subset X \text { is a increasing sequence with } x_{n} \rightarrow z \text {, then } x_{n} \prec z, \forall n . \tag{18}
\end{equation*}
$$

If there exists an $x_{0} \in X$ with $x_{0} \preceq T x_{0}, T$ has a fixed point.
Proof. As in the proof of Theorem 2.2, take $x_{0} \in X$ and set $x_{n+1}=T x_{n}$. If $x_{n}=x_{n+1}$ for any $n \geq 0$, then obviously T has a fixed point. Thus, suppose $x_{n} \neq x_{n+1}$ for any $n \geq 0$. Since $x_{0} \preceq T x_{0}$, then

$$
\begin{equation*}
x_{0} \prec x_{1} \prec \cdots \prec x_{n} \preceq x_{n+1} \prec \cdots \tag{19}
\end{equation*}
$$

As in the proof of Theorem 2.2, we observe that the sequence $\left\{x_{n}\right\}$ is Cauchy and thus it converges to $z \in X$. Hence, we have (as in the proof of Theorem 2.2)

$$
\begin{equation*}
p(z, z)=\lim _{n \rightarrow \infty} p\left(x_{n}, z\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0 \tag{20}
\end{equation*}
$$

We assert that $T z=z$. Due to (18) and (PM4), we have

$$
\begin{align*}
p(T z, z) & \leq p\left(T z, T x_{n}\right)+p\left(x_{n+1}, z\right)-p\left(x_{n+1}, x_{n+1}\right) \tag{21}\\
& \leq p\left(z, x_{n}\right)-\phi\left(p\left(z, x_{n}\right)\right)+p\left(x_{n+1}, z\right)-p\left(x_{n+1}, x_{n+1}\right)
\end{align*}
$$

Letting $n \rightarrow \infty$ and regarding the continuity of ϕ, then (16) yields that $p(T z, z) \leq 0$. Hence $T z=z$.

If we take $\Phi(t)=t-\phi(t)$, then one can easily see that Φ satisfies all conditions of the main theorem of [6]. So we can state some results of [6] as a corollary of our theorem.

Corollary 2.4 (See [6]) Let (X, \preceq) be a partially ordered set and (X,p) a complete partial metric space. Suppose $T: X \rightarrow X$ be a self mapping such that

$$
p(T x, T y) \leq \Phi(p(x, y)), \text { for all } x, y \in X, \text { with } x \preceq y
$$

where $\Phi(t):[0, \infty) \rightarrow[0, \infty)$ is continuous, non-decreasing function such that $\phi(t)<t$ for each $t>0$. Then T has a unique fixed point.

If we take $\Phi(t)=k t$ we get Banach contraction principle for PMS.

Corollary 2.5 (See [2, 4, 6]) Let (X, \preceq) be a partially ordered set and (X, p) a complete partial metric space. Suppose $T: X \rightarrow X$ be a self mapping such that

$$
p(T x, T y) \leq k p(x, y), \quad \text { for all } x, y \in X, \text { with } x \preceq y
$$

where $k \in[0,1)$. Then T has a unique fixed point.

Example 2.6 Let $X=I R^{+}$and $p(x, y)=\max \{x, y\}$ then (X, p) is a $P M S$ (See e.g. [6].) Suppose $T: X \rightarrow X$ such that $T x=\left\{\begin{aligned} \frac{x^{2}}{1+x} & \text { for all } x \in[0,1] \\ 2 x & \text { for all } x \in(1, \infty)\end{aligned}\right.$ and $\phi(t):[0, \infty) \rightarrow[0, \infty)$ such that $\phi(t)=\frac{t}{1+t}$. It is clear that T is nondecrasing. For $x \prec y$ we have

$$
p(T x, T y)=\max \left\{\frac{x^{2}}{1+x}, \frac{y^{2}}{1+y}\right\}=\frac{x^{2}}{1+x} \leq x-\frac{x}{1+x}=\frac{x^{2}}{1+x}
$$

Thus, it satisfies all conditions of the Theorem 2.3. Notice also that, for choosing $\Phi(t)=t-\phi(t)=\frac{t^{2}}{1+t}$, all conditions of Theorem 1 of [6] and guarantee that T has a unique fixed point, indeed $x=0$ is the required point.

References

[1] S.G. Matthews. Partial metric topology. Research Report 212. Dept. of Computer Science. University of Warwick, 1992.
[2] S.G. Matthews. Partial metric topology. In, General Topology and its Applications. Proc. 8th Summer Conf., Queen's College (1992). Annals of the New York Academy of Sciences Vol. 728 (1994), pp. 183-197.
[3] S. Oltra and O. Valero, Banach's fixed point theorem for partial metric spaces, Rendiconti dell'Istituto di Matematica dell'Universit di Trieste, vol. 36, no. 1-2, pp. 17-26, 2004.
[4] O. Valero, On Banach fixed point theorems for partial metric spaces, Applied General Topology, vol. 6, no. 2, pp. 229-240, 2005.
[5] I. Altun, F. Sola, and H. Simsek, Generalized contractions on partial metric spaces, Topology and Its Applications, vol. 157, no. 18, pp. 27782785, 2010.
[6] I. Altun and A. Erduran, Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces, Fixed Point Theory and Applications, vol. 2011, Article ID 508730, 10 pages, 2011. doi:10.1155/2011/508730
[7] Boyd D.W., Wong, .S.W.: On nonlinear contractions, Proc. Amer. Math. Soc. 20,458-464(1969).
[8] Alber,Ya. I., Guerre-Delabriere, S.: Principle of weakly contractive maps in Hilbert space In: I. Gohberg and Yu. Lyubich, Editors, New Results in Operator Theory, Advances and Appl. 98, Birkhäuser, Basel ,7-22,(1997).
[9] Rhoades, B. E.: Some theorems on weakly contractive maps. Nonlinear Anal., 47(4), 2683-2693, (2001).
[10] Hussain, N., Jungck, G.: Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl. 321, 851-861(2006).
[11] Song,Y.: Coincidence points for noncommuting f-weakly contractive mappings, Int. J. Comput. Appl. Math. (IJCAM) 2 (1),17-26 (2007).
[12] Song,Y., S. Xu,S.: A note on common fixed-points for Banach operator pairs, Int. J. Contemp. Math. Sci. 2, 1163-1166(2007).
[13] Zhang, Q.,Song,Y .: Fixed point theory for generalized φ-weak contractions, Appl. Math. Lett. 22(1), 75-88(2009).
[14] Păcurar, M., Rus, I.A.: Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 72, (3-4),1181-1187 (2010).
[15] Abdeljawad, T. and Karapınar, E.: Quasi-Cone Metric Spaces and Generalizations of Caristi Kirk's Theorem. Fixed Point Theory Appl., 9 pages doi:10.1155/2009/574387 (2009).
[16] E. Karapınar: Generalizations of Caristi Kirk's Theorem on Partial Metric Spaces, Fixed Point Theory Appl., (in press)

Received: May, 2011

