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Abstract

In this manuscript, the notion of weak ¢-contraction is considered
on partial metric space. It is shown that a self mapping 7" on a com-
plete partial metric space X has a fixed point if they satisfied weak
¢-contraction.
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1 Introduction and Preliminaries

In 1992, Matthews [1, 2] introduced the notion of a partial metric space which is
a generalization of usual metric spaces in which d(z, x) are no longer necessarily
zero. After this remarkable contribution, many authors focused on partial
metric spaces and its topological properties (See e.g. [3, 4, 5, 6, 16])

A partial metric space (See e.g.[1, 2]) is a pair (X,p: S xS — IR") (where
IR™ denotes the set of all non negative real numbers) such that

(PM1) p(z,y) = p(y,x) (symmetry)
(PM2) If p(x,r) = p(z,y) = p(y,y) then z = y (equality)
(PM3) p(z,z) < p(x,y) (small self-distances)

(PM4) p(z,2) +p(y,y) < p(z,y) + p(y, 2) (triangularity)
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for all x,y,z € X. We use the abbreviation PMS for the partial metric space
(X, p).
Notice that for a partial metric p on X, the function d, : X x X — R™"
given by
dp(z,y) = 2p(z,y) — p(z,2) — p(y,y) (1)
is a (usual) metric on X. Observe that each partial metric p on X generates
a Ty topology 7, on X with a base of the family open of p-balls {B,(z,¢) :
x € X,e > 0}, where By(z,e) ={y € X : p(z,y) < p(z,z)+e} forall z € X
and ¢ > 0. Similarly, closed p-ball is defined as B,[z,e] = {y € X : p(z,y) <

plz,x) + e}
Definition 1.1 (See e.g.[1, 2, 6] )

(1) A sequence {x,} in a PMS (X,p) converges to v € X if and only if
p(z,x) = lim, o p(z, x,),

(i) a sequence {x,} in a PMS (X,p) is called a Cauchy if and only if
My, 100 P(Tn, Tm) exists (and finite),

(1it1) A PMS (X,p) is said to be complete if every Cauchy sequence {x,} in
X converges, with respect to 1,, to a point x € X such that p(x,x) =
WMy 00 P(Tn, Tim)-

(iv) A mapping f : X — X is said to be continuous at xy € X, if for every
e > 0, there exists 6 > 0 such that f(B(zo,0)) C B(f(x0),¢).

Lemma 1.2 (See e.g.[1, 2, 6] )

(A) A sequence {x,} is Cauchy in a PMS (X, p) if and only if {z,} is Cauchy
in a metric space (X, d,),

(B) A PMS (X,p) is complete if and only if a metric space (X,d,) is com-
plete. Moreover,

lim dy(z,z,) =0< p(x,x) = T}ergop(x, zrp) = lim p(z,,zm) (2)

n—oo n,m— oo

Boyd and Wong [7] introduced the notion of ®-contraction: a self mapping
T on a metric space X is called ®-contraction if there exists an upper semi-
continuous function @ : [0, 00) — [0, c0) such that

d(Tz, Ty) < ®(d(x,y)) forall z,y € X.

Alber and Guerre-Delabriere [8], generalized the notion of ®-contraction by
defining the notion of weak ¢-contraction for Hilbert spaces: A self mapping
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T on a metric space X is called weak ¢-contraction if ¢ : [0,00) — [0,00) is a
strictly increasing map with ¢(0) = 0 and

d(Tz, Ty) < d(z,y) — ¢(d(z,y)), for all z,y € X.

They also proved the existence of fixed points in Hilbert spaces. I one replaces
Hilbert spaces with an arbitrary Banach spaces [8] still we have fixed points(See
e.g. [9]). We should note that for a lower semi-continuous mapping ¢, the
function ®(u) = u — ¢(u) coincides with Boyd and Wong types.

In fixed point theory, ®-contraction and weak ¢-contraction have been
studied by many authors, (See e.g.,[10, 11, 12, 13, 14], also [15]). In this
manuscript, by using weak ¢-contraction on a complete partial metric space
we obtain a unique fixed point.

2 Main Results

Definition 2.1 (¢f. [14]) Let (X, =) be a partially ordered set and (X, p)
a complete partial metric space. An operator T : X — X is called a weak ¢-

contraction if there exists a continuous, non-decreasing function ¢ : [0, 00) —
[0, 00) with ¢(t) > 0 fort € (0,00) and ¢p(0) =0, such that

p(TLL’, Ty) < p(SL’, y) - ¢(p($, y)) (3>
for any x, y € X with x < y.

Theorem 2.2 Let (X, <) be a partially ordered set and (X,p) a complete
partial metric space. Suppose that T : X — X is nondecreasing, continuous
and weak ¢-contraction. If there exists an xo € X with xo < Txo, T has a
unique fized point.

Proof. Let o € X and set x,.1 = Tx,. Notice that, if z, = x,,;, for any
n > 0, then obviously 7" has a fixed point. Thus, suppose z, # x,1 for any
n > 0. Since z¢y < Txg, then

To 2T R DTy Dy D0 (4)
Due to (3), we have

P(Tpi1, Tny2) = p(T20, Txni1) < p(Th, Tns1) — O(P(Tn, Tnt1)).

Define t,, = p(x,,, Tpi1).
Then one can obtain
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which implies that {t,} is a non-negative non-increasing sequence. Hence, {t,,}
converges to L where L > 0. So there are two cases: L > 0 or L = 0. Assume
that L > 0. Regarding that ¢ is non-decreasing, we get 0 < ¢(L) < ¢(t,).
Due to (5), we have t,41 <t, — ¢(t,) <t, — (L) and so

tne <ty — A(tng1) <t — O(tn) — P(tngr) <t — 2¢0(L).

Inductively we obtain t,4, < t, — k¢(L) which is a contradiction for large
enough k € IN. Hence we have L = 0. Thus, we have lim,, o p(Zy41,2,) = 0.

Now, we show that {x,} is a Cauchy sequence in (X, p). For this purpose,
define s, = sup{p(x;,x;) : 4,7 > n}. It is clear that the sequence {s,} is
decreasing. If lim, ,. s, = 0, then {x,} is a Cauchy sequence. So consider
the other case: Suppose lim,, .o s, = s > 0. One can choose £ small enough
(e.g. € < 55) and a natural number N such that

P(Tn, Tnt1) <&, and s, <s-+e, forall n>N. (6)
Regarding the definition of sy, there exist m,n > N + 1 such that
s—e< 8, —¢€ < p(Tm,Ty). (7)
By triangle inequality we observe that
P(@n, Tm) < P(Tn; Tn1) + P(Tn-1, Tm) = P(Tn-1, Tn-1) (8)

p(xna xm) < p(xnv xm—l) + p(xm—lu xm) - p(xm—lu xm—l) (9)
p(xn—lv xm) S p(xn—lv xm—l) + p(xm—lu xm) - p(xm—lu xm—l) (1O>
Due to (7) and (6) the expression (8) and (9) yield that

s —2e < p(Tp_1,Tm), and s—2e < p(Tp, Tim_1)- (11)
Combining (10) and (11), we get that

s—3e < p(l’n_l, xm—l)- (12)
Thus,
p(Ina Im) - p(TIn—la Txm—l) S p(xn—la xm—l) - ¢(p(zn—1> Im—l))
< p(Tn—1, Tm-1) — ¢(5) (13)

Regarding (7) and (12), the expression (13) implies that sy.1 < sy — ¢(s) for
small enough ¢. It is impossible. Hence s = 0. Notice that

dp(Trs Tm) = 2p(Ts T) — P(Tn—1, Tn1) — O(P(Tm—1, Ti—1)) (14)
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Since s = 0, then d,(z,, z,,) — 0 Therefore, the sequence {x,} is Cauchy in
(X,d,). Since (X,p) is complete, by Lemma 2 (X, d,) is complete. and the
sequence {x,} is convergent in X, say z € X. Again by Lemma 2,

p(z,2) = nh_)rglop(:cn, 2)= lim p(z,,zm) (15)

7,1M—00

Since s = 0, then by (15) we have p(z, z) = 0. We assert that Tz = z. Due
to (PM4), we have

p(TZ, Z) < p(TZ, Txn) + p(xn—l—la Z) - p(xn+17 xn+1) (16)
< p(z,2n) = O(p(2,20)) + P(Tnta, 2) = P(Tnt; Tnta)

Letting n — oo and regarding the continuity of ¢, then (16) yields that
p(Tz,2) <0. Hence Tz = z.

Now we show z is unique fixed point of 7. Assume the contrary, that is,
there exists w € X such that z # w and w = Tw.

p(zv ’UJ) = p(T'Zu T’UJ) < p(Z, U)) - ¢(p(27 U)))
which is a contradiction. Thus z is a unique fixed point of 7. m

Theorem 2.3 Let (X, <) be a partially ordered set and (X,p) a complete
partial metric space. Suppose that ¢ : [0,00) — [0,00) is a continuous, non-
decreasing function ¢ : [0,00) — [0,00) with ¢(t) > 0 for t € (0,00) and
»(0) = 0. Suppose also that T : X — X is nondecreasing and satisfying

p(TLL’, Ty) < p(SL’, y) - ¢(p($, y)) (17>

for any x, y € X with x < (that is, x <y and x # y). Moreover the following
condition 1s hold:

If {z,} C X is a increasing sequence with x, — z, then x, < z, ¥Yn. (18)

If there exists an xq € X with vo = Txo, T has a fixed point.

Proof. As in the proof of Theorem 2.2, take zy € X and set x, 1 = Tx,. If
Tp = Tpyq for any n > 0, then obviously T has a fixed point. Thus, suppose
Ty # Tpyq for any n > 0. Since xg < Tzg, then

l’o—<l’1-<""<l’njl'n+1'<"' (19)

As in the proof of Theorem 2.2, we observe that the sequence {x,} is Cauchy
and thus it converges to z € X. Hence, we have (as in the proof of Theorem
2.2)

p(z,2) = lim p(z,,2) = lim p(z,,z,) =0 (20)

n—o0 n,m—o0
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We assert that Tz = z. Due to (18) and (PM4), we have

p(TZ, Z) S p(TZ, Txn) + p(In+1a Z) - p(xn+la xn-i—l) (21>
< p(z,20) = (2, 20)) + P(Tns1, 2) = P(Tnt1, Tnsr)

Letting n — oo and regarding the continuity of ¢, then (16) yields that
p(Tz,2) <0. Hence Tz =z2. m

If we take ®(t) = ¢t — ¢(t), then one can easily see that & satisfies all
conditions of the main theorem of [6]. So we can state some results of [6] as a
corollary of our theorem.

Corollary 2.4 (See [6]) Let (X, =) be a partially ordered set and (X,p) a
complete partial metric space. Suppose T : X — X be a self mapping such that

p(Tx,Ty) < ®(p(x,y)), forallz,ye X, witha <y

where ®(t) : [0,00) — [0, 00) is continuous, non-decreasing function such that
o(t) <t for each t > 0. Then T has a unique fixed point.

If we take ®(t) = kt we get Banach contraction principle for PMS.

Corollary 2.5 (See [2, 4, 6]) Let (X,=) be a partially ordered set and
(X,p) a complete partial metric space. Suppose T : X — X be a self mapping
such that

p(Tx, Ty) < kp(x,y), foralzxz,ye X, withe <y

where k € [0,1). Then T has a unique fized point.

Example 2.6 Let X = IR" and p(z,y) = max{x,y} then (X,p) is a PMS
2
L for all x €0,1]
.q. ) T:X—-X Ter=( =
(See e.g. [6].) Suppose — X such that Tx { 5S¢ forallz € (1,00)
and ¢(t) : [0,00) — [0,00) such that (t) = 1i5. It is clear that T is nonde-
crasing. For x <y we have

2 2 2 2
p(Tx, Ty) = max{ ’ Y } ’ ’ ’

1+2' 1+y Tt 152 14a

Thus, it satisfies all conditions of the Theorem 2.3. Notice also that, for choos-

ing ®(t) =t — ¢(t) = f—;, all conditions of Theorem 1 of [6] and guarantee

that T has a unique fixed point, indeed x = 0 is the required point.
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