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Abstract
In this paper, we characterize boundedness and compactness of the
volterra composition operators between weighted Bergman and Bloch

spaces.
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1 Introduction

Let D be the open unit disk in the complex plane C, H (D) be the space of
holomorphic functions on D. Let dA(z) = %dxdy = ;rdrd@ be the normal-
ized area measure on D. Recall that (see, for example [4]) positive continuous
function w on D is a normal weight if

(i) w is a radial weight, that is, w(z) = w(|z]|) for every z € D.

(ii) there exist positive numbers s and ¢, 0 < s < ¢ such that

w(r) w(r)
a—ry % =y

— 00, as r— 1.
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For 0 < p < 00, and a normal weight function w, let A(p,w) denote the space
of all holomorphic functions f on D such that

P(lz
g = [, LFEP 2 dA) < o
For 1 <p < o0, A(p,w) is a Banach space equipped with the norm || - || 4(p.w)-
When 0 < p <1, ||-||apw) is & quasinorm on A(p,w) and A(p,w) is a Frechet
space, but not a Banach space. Note that if w(r) = (1 — r)"/?, then A(p,w) is
the Bergman space AP.
Moreover the following asymptotic relation holds

N7 ) ) ([P 2 W([2]) p
1 llage) = - 1FDO)] + (/D [F ()P = |2P) md/&(z)) CY
=0
where the notation A =< B means that there is a positive constant C' such
that B/C < A < CB. (see, for example [4]). Also, it is well known that
the point evaluations are bounded linear functionals on A(p,w) and for every
f € A(p,w), the following estimate holds

(n) < 1S 14w . D 2

O ComEa -y FE P ?
Now we define the Bloch-type spaces of holomorphic functions. The Bloch-type
spaces B, (D) = B, consists of all f € H(D) such that

A5, = [FO)] + bu(f) = | £(0)] +§1€11D>V(Z)|f’(Z)| < 0, (3)

where v is a positive continuous radial weight on D such that v(]z|) decreas-
ingly converges to 0 as |z| — 1. The little Bloch-type space B, (D) = B,
consists of all f € H(D) such that

lim v(2)|f(2)] = 0.

|z]—1
With the norm || - ||s, the Bloch-type space B, is a Banach space and the little
Bloch-type space B, is a closed subspace of the Bloch-type space.

Let g, h € H(D) and ¢ be a holomorphic self-map of D. For a non-negative

integer n, we define a linear operator Iy, as

ol = [ 1@ ©)h @, e HD).

The operator [;, induces many known operators. When ©(z) = z, we drop
¢ and simply write [}’ for I} . If n = 0 and h(z) = ¢'(2), then we get the
operator T, , induced by g and ¢ as

1,0 f(2) = [ e Os(Q) = [ () (e = [ Flelt2)) = o' t2)it
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The operator T, , can be viewed as a generalization of the Riemann-Stieltjes
operator T, induced by g, defined by

T,4() = [ 7(Qg(c) = [ f(t2)zg 1), =€ D.

If n =1, h(z) = g(2) and ¢(z) = z, then we get the operator .J,, defined by
Yoneda in [22] as

L1 = [ F(Q9)dc, =D,

For more about operators of the type I} ,, we refer [1]-[22].
Throughout this paper constants are denoted by C|, they are positive and not
necessarily the same at each occurrence.

2 Main Results

In this section, we characterize boundedness and compactness of I}, weighted
Bergman spaces to Bloch-type spaces of holomorphic functions.

Theorem 2.1 Let 0 < p < oo, v a radial weight, w a normal weight,
h € H(D) and ¢ be a holomorphic self-map on D. Then I} , : A(p,w) — B,
1s bounded if and only if

M :=sup v(2)|h(z)] — < 00. (4)
€D w(|p(2)])(1 = le(2) )7
Moreover
115 ol Apw)—B, = M. (5)
Proof. Suppose that (4) holds. By (2) for f € A(p,w) we have

AL L

T, pw)-

w(lzD (1 = Je(2)2)7™
Since (I} ,f)'(0)] = 0, so by (3) we have I , : A(p,w) — B, is bounded and

V()Y ()] = v (@)]Ih(z)] < ©

115 ol A w)—B, < CM. (6)
Conversely, suppose that I, : A(p,w) — B, is bounded. For z € D, consider

the function (1~ (o))
1.¢) = s

W(lp()N(A = p(2)¢)r
It is easy to see that f. € A(p,w) and || f.||4pw) < C. Thus by the bounded-
ness of Iy, A(p,w) — B, we have
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v(2)[M)|I £ (e ())] < Tk s,

< "]f?,<p||A(p,w)—>BquZ||A(p7w)
S C‘ ‘]}?,<p| |-A(p7w)_>Bu *

Therefore,

v(2)|h(z)]
I,
w(le()N(A = () 2)»™
Taking supremum over z € D, we have (4). Moreover

< CII| Agpo) 5, -

M < ClIL a5, (7)
Also from (6) and (7), ||I}(::Z||A(p’w)_)lgy = M.
The next lemma can be proved in a standard way (see [2], Theorem 3.11).

Lemma 1 Let 0 < p < oo, v a radial weight, w a normal weight, h € H (D)
and ¢ be a holomorphic self-map on D. Then the operator I} , : A(p,w) — B,
is compact if and only if for any sequence {f;} in A(p,w) which converges to
zero uniformly on compact subsets of D, {],?ij} converges to zero in B,,.

Theorem 2.2 Let 0 < p < oo, v a radial weight, w a normal weight,
h € H(D) and ¢ be a holomorphic self-map on D. Then the operator Iy,
A(p,w) — B, is compact if and only if
h
lim sup v(2)Ih(z)] — = 0. (8)
T el w(le(2)]) (1= [e(2)?)P T

Proof. Suppose that (8) holds. Let {f;} be a bounded sequence in A(p,w)

that converges to zero uniformly on compact subsets of D. Let M = sup; || ;|| a(p.w) <
oo. Given € > 0, there exists an r € (0, 1) such that if |¢(z)| > r, then

v
w(le()N(L = lp(2)2)7™"

<e.

By (2), we have

n il A
)] < O—— A
w(lz[)(1 = [=[*)»
Thus for z € D such that |¢(z)| > r, we have

(2T, ) ()] = v(@) )N (e (2)]

v(2)Ih(2)]
< 1 i pw SEM,
S oD ooy e
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for all j. On the other hand since f; — 0 uniformly on compact subsets of D,
so |fj(¢(0))] < e. Moreover, there exists jy such that if [¢(2)| < r and j > jo,

then \f](")(<p(z))| < €. By taking f(z) = 2"/n! in A(p,w), the boundedness of
Iy, A(p,w) — B, implies that N = supv(2)|h(z)| < oco. Thus by (??), we
zeD

have
11 o fills, = 1 f3(0(0)] + sup.ep v(2)[ (1}, f3) (2)]

<e+ sup v ()] + sup v()IAE)]f ()]

le(z)|<r lo(2)|>r
<e+ sup v(2)|[h(2)| 7 (p(2)] +eM < eC.
lp(z)|<r
Since ¢ > 0 is arbitrary, I}, : A(p,w) — B, is compact. Conversely, suppose
that I, : A(p,w) — B, is compact and (8) does not holds. Then there exists
a positive number § and a sequence {z;} in D such that |¢(z;)| — 1 and
v(2)1h(z)|
ilin
w(le(z))(1 = le(z))7"

)
for all j. For each j, let a; = ¢(z;) and consider the function f; as

>0

(1= fa )™

— \it41? 2€D.
w(lag])(1 —ajz)»

fi(z) =

Then f; is norm bounded and f; — 0 uniformly on compact subsets of D. It
follows that a subsequence of {I} f;} — 0 in B,. On the other hand

15 ills, = VDT f3) (2] = v(z)|h(z) £ (2(2)]

_ vl
wlasl) (1= ()7

which is absurd. Hence we are done.

Y

Theorem 2.3 Let 0 < p < oo, v a radial weight, w a normal weight,
h € H(D) and ¢ be a holomorphic self-map on D. Then the operator I}, ,
A(p,w) — B, is bounded if and only if
v(2)|h(z)|

1. sup — < o0 and
2€D w(|p(2)])(1 = le(2) )7

2. heB,y.
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Proof. Suppose that I} , : A(p,w) — B, is bounded. Then (1) can be proved
exactly in the same way as in the proof of Theorem 1. By taking f(z) = 2"/n!
in A(p,w) we get h € B, .
Conversely, suppose that (1) and (2) are satisfied. Then for each polynomial
p(z), we have

v(2)|(I1op) ()] < v(2)|h(2)][P" (0(2))]
from which it follows that I} ,p € B, . Since the set of all polynomials is
dense in A(p,w), we have that for every f € A(p,w) there is a sequence of
polynomials {p,,} such that || f — pi||apw) — 0 as n — oo. Since the operator
Iy, A(p,w) — B, is bounded, we have

Ui f = Iy opmlls, < 7l aww -5, 1f = Pmlls, =0

as n — 00. Since B, is a closed subspace of B,, we have Iﬁ@(A(p, w)) C Byp.
Therefore, I} = A(p,w) — B, is bounded.

The following characterization can be proved on similar lines as Lemma 5.2
in [8].

Lemma 2 A closed set K in B,y s compact if and only if it is bounded

and satisfies

lim sup v(2)|f'(2)| = 0.
|z|—=1 fek

Theorem 2.4 Let 0 < p < oo, v a radial weight, w a normal weight,
h € H(D) and ¢ be a holomorphic self-map on D. Then the operator I}, ,
A(p,w) — B, is compact if and only if

00
= w(p(2)) (1 - ()

Proof. By Lemma 2 the set {I} f : f € A(p,w), || f|la@pw) < 1} has compact
closure in B, if and only if

tim, sup{v(2) (17, ) (2)] : § € Alp.), |/ lLagrn < 1} = 0.

—0. 9)

Suppose that f € A(p,w) is such that || f||4;pw) < 1 and (9) holds. Then
v, f) (2)] = v(2)|h(2) [ (e(2))]
e VARG
w(le(DL = lp(2)[2)»™"

Thus
sup{v(2)|(1; . f) (2)] : f € A, W), | fl| apw) < 1}
O C
w(lp()N A = [e(2)2)e ™
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and it follows that

tim_sup{u(2) (I, ) (2)] < f € AW,w), 1 laga < 1} = 0.

|z]—1—

Hence I}, : A(p,w) — B, is compact.
Conversely, suppose that I}, : A(p,w) — B, is compact. Using the same
test as in the proof of Theorem 2, we have

i V@G
P () (L~ fel(2)2)F "

Since I}! , : A(p,w) — By is bounded. By Theorem 3, h € B, . It is easy to
show that h € B, and (11) is equivalent to (10).

—0. (10)
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