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Uniqueness type result in dimension 3.
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Abstract

We give some estimates of type sup x inf on Riemannian manifold of
dimension 3 for a prescribed curvature type equation. As a consequence,
we derive an uniqueness type result.
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1 Introduction and Main Results

In this paper, we deal with the following prescribed scalar curvature type
equation in dimension 3:

Au+ h(x)u = V(z)u®, u > 0. (E)

Where h, V' are two continuous functions. In the case 8h = R, the scalar
curvature, we call V' the prescribed scalar curvature. Here, we assume h a
bounded function and hg = ||h||Le ().

We consider three positive real number a,b, A and we suppose V lips-
chitzian:

0<a<V(z)<b< 4ooand ||[VV||renn < A. ()

The equation (F) was studied a lot, when M = Q C R" or M = S,, see for
example, [2-4], [11], [15]. In this case we have a sup X inf inequality.

The corresponding equation in two dimensions on open set 2 of R2, is:
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Au=V(x)e", (E)

The equation (E’) was studed by many authors and we can find very impor-
tant result about a priori estimates in [8], [9], [12], [16], and [19]. In particular
in 9] we have the following interior estimate:

supu < ¢ = c(inf V, ||V|| ), inf u, K, Q).
K Q Q
And, precisely, in [8], [12], [16], and [19], we have:
Csupu+infu < c = c(inf V, [|V]|=(q), K,Q),
K Q Q
and,
supu + infu < ¢ = c(inf V. [|V]|cea(q), K, Q).
K Q Q

where K is a compact subset of 2, C' is a positive constant which depends
ian %
,and, a € (0, 1].

supg V'

In the case V' =1 and M compact, the equation (F) is Yamabe equation.
Yamabe has tried to solve problem but he could not, see [22]. T.Aubin and
R.Schoen have proved the existence of solution in this case, see for example
[1] and [14] for a complete and detailed summary.

on

When M is a compact Riemannian manifold, there exist some compactness
result for equation (£) see [18]. Li and Zhu see [18|, proved that the energy
is bounded and if we suppose M not diffeormorfic to the three sphere, the
solutions are uniformly bounded. To have this result they use the positive
mass theorem.

Now, if we suppose M Riemannian manifold (not necessarily compact) and
V =1, Li and Zhang [17| proved that the product sup x inf is bounded. Here
we extend the result of [6].

Our proof is an extension of Brezis-Li and Li-Zhang result in dimension 3,
see |7| and [17], and, the moving-plane method is used to have this estimate.
We refer to Gidas-Ni-Nirenberg for the moving-plane method, see [13]. Also,
we can see in [10], one of the application of this method.

Here, we give an equality of type sup X inf for the equation (E) with general
conditions (C'). Note that, in our proof, we do not need a classification result
for some particular elliptic PDEs on R3.

In dimension greater than 3 we have other type of estimates by using
moving-plane method, see for example [3, 5].



Uniqueness type result 137

There are other estimates of type sup +inf on complex Monge-Ampere
equation on compact manifolds, see [20-21] . They consider, on compact Kahler
manifold (M, g), the following equation:

(wg + 8_5¢)” = el toun,
wg +00¢ >0 on M

And, they prove some estimates of type sup,, +minf,;, < C orsup,, +minfy; >
C' under the positivity of the first Chern class of M.

Here, we have,

Theorem 1.1 For all compact set K of M and all positive numbers a, b, A, hg
there is a positive constant ¢, which depends only on, a,b, A, ho, K, M, g such
that:

supu X infu < ¢,
K M
for all u solution of (E) with conditions (C).

This theorem generalise Li-Zhang result, see [17] in the case V = 1. Here,
we use Li and Zhang method in [17].

In the case h =€ € (0,1) and u, solution of :

Au, + eu, = Vou?, ue > 0. (E.)
We have:

Corollary 1.2 For all compact set K of M and all positive numbers a, b, A
there is a positive constant ¢, which depends only on, a,b, A, K, M, g such that:

sup u, X infu, < ¢,
M
for all u solution of (E.) with conditions (C).

Now, if we assume M a compact riemannian manifold and 0 < a <V, <
b < 400
we have:

Theorem 1.3 (see |3|). For all positive numbers a,b, m there is a positive
constant ¢, which depends only on, a,b,m, M, g such that:

esup u, X infu, > ¢,
M M
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for all u. solution of (E.) with

maxu, > m >0
M

As a consequence of the two previous theorems, we have:
Theorem 1.4 For all positive numbers a,b, A we have:
max u, — 0,
M

and (up to a subsequence),

maxy; U minpy u,
————— —wy >0, and, ——— — wy > 0.
61/4 0 ) ) 61/4 0
Remarks:
e Tt is not necessary to have u, = wpe'/*, because if we take a noncon-

sant function V', we can find by the variational approach a non constant
positive solution of the subcritical equation:

Au, + eu, = ue‘/u?e, with pe, ue > 0.

In this case (subcritical which tends to the critical) we also have the
sup X inf inequalities and the uniqueness type theorem.

Ue
e In fact, we prove, up to a subsequence that —j1 converge to a constant
€

which depends on a,b and A.

2 Proof of the theorems

Proof of theorem 1.1:

We want to prove that:

maxu X min u < c=c(a,b, A, M 1
EB(O,?) ! B(0,4¢) '= (0,6, 4, M, 9) (1)
We argue by contradiction and we assume that:

max up X min wuy > kep (2)
B(0,ex) B(0,4¢)
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Step 1: The blow-up analysis

The blow-up analysis gives us :

For some 7, € B(0, €;), ux(Zr) = maxp(o,,) Uk, and, from the hypothesis,
uk(fk)2ek — +00.

By a standard selection process, we can find z, € B(Z,€;/2) and o €

(0, €, /4) satisfying,

Uk(fﬂk)QUk — +00, (3)

ug(xg) > uk(zy), (4)

and,

ug(x) < Crug(zy), in B(xy, o), (5)

where (] is some universal constant.
It follows from above ( (2),(4)) that:

ur(xk) X min  ugegp > up(Ty) X min uge, >k — 4o00. (6)
OB(z,2¢ek) B(0,4¢r)
We use {z',...,2"} to denote some geodesic normal coordinates centered

at x, (we use the exponential map). In the geodesic normal coordinates,
g = gij(2)dzdz?,
9ij(2) — 65 = 0(7’2)7 g = det(gij(2)) = 1+ O(Tz)a h(z) = O(1), (7)
where r = |z|. Thus,
1 .
Agu = ﬁai<\/§g”3ju) = Au+ b;0;u + d;;0;ju,
where

bj=0(r), di; =0(r*)  (8)

We have a new function:

uk(y) = My ug (M, %y) for Jy| < 3, M;;

where M, = u(0).
From (5), (6), we have:
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Avy, + b;0jvr + Jijf)ijvk — v +v,” = 0 for |y| < 3¢, M?

ui(y) < Cyfor |y| < o M}
iy oo miny, —oc, a2 (Vi (y)[yl) = +o0  (9)

where C] is a universal constant and

bi(y) = M, bi(M%y), dij(y) = diy(My)  (10)
and,
cly) = M h(M?y)  (11)

We can see that for |y| < 3¢, M7, we have:

()| < CMyl, |dij(y)| < CM |y, [e(y)| < Mt (12)
where C' depends on n, M, g.

It follows from (9),(10), (11),(12) and the elliptic estimates, that, along
a subsequence, v;, converges in C? norm on any compact subset of R? to a
positive function U satisfying:

AU 4 U5 =0 in R?
U0)=1,0<U<C; (13)

Step 2: The Kelvin transform and moving-plane method
For x € R? and \ > 0, let,

v (y) = FA:cy“’f (;I; n M)

ly — x|

denote the Kelvin transformation of v, with respect to the ball centered at
x and of radius A.

We want to compare for fixed x, v, and v,;\’m. For simplicity we assume
x = 0. We have:

A ) A2y
up(y) = m”k(?JA)a with y* = W

For A > 0, we set,
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The boundary condition, (9), become:

lim min (v = lim min (v = +00 14
Jm, min, @) = im | min | @.0)l) (1)

We have:

A+ V(@) = Bry) fory €53 (15)

Eiy) = - (ﬁ) (B:(5)00n(5") + diy ()0 ) — e o). (16)

Clearly, from (10), (11), there exists Cy = C(A;) such that,

|E1(y)| < CoN My fory € Sy (17)
Let,

wy = VUi —U]i\.

Here, we have, for simplicity, omitted k. We observe that by (9), (15):

A’LU,\ + Bl@w,\ + dijgijUJ)\ — cwy + 554‘/kw)\ = E)\ in 2)\ (18)

where £ stay between v, and vy, and,

By = =bi0py, + digdyyvp + cvp — By — (Vi = V) ()’ (19)
A computations give us the following two estimates:
[0 ()] < CAly[™, and |00 (y)| < CAly|™ in Ty (20)
From (10), (11), (20), we have,
Lemma 2.1 . For somme constant C3 = C5(\)
Bl < CsAM y| ™! + Cs XM %[yl ™ i By (21)

we consider the following auxiliary function:

A A\
hy = —CLAM2\? (1 - m) +CRAMTEN (1 — (m) ) = Cs M A (Jyl =),

where (', Cy and C3 are three positive numbers.
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Lemma 2.2 . We have,
wy+ hy >0, in X, VO < A < )\ (22)
Proof of Lemma 2.2. We divide the proof into two steps.

Step 1. There exists Aoy > 0 such that (22) holds :

wy + hy >0, inz)\vo<)\§)\07;€.

To see this, we write:

R wely) — o) .
wA—Uk(y>_Uk<y)_\/Iy| (xﬂyl () — Vv oy ))

Note that y and y* are on the same ray starting from the origin. Let, in
polar coordinates,

f(r,0) = /rog(r,0).

From the uniform convergence of vy, there exists ryp > 0 and C' > 0 inde-
pendant of k£ such that,

%(r, ) > CrY? for 0 <r < rg.

Consequently, for 0 < A < |y| < rp, we have:

wa(y) + ha(y) = ve(y) — ve(y) + ha(y),

1 -
> = CVrg Iyl = [yM) + ha(w)
0

C _ .
> (= CAM)(Jyl = ) since Jy] = [y > ly] =X

> 0. (23)

Since,

()] + vp(y) < Clk, o)A, 10 < |y| < €. M2,

we can pick small Aoy € (0,7¢) such that for all 0 < A < Ao we have,

w(y) + ha(y) > (miﬂ vp — C(k,m0)dog > 0V 1g < |y| < e M2
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Step 1 follows from (23).

Let,

M =sup{0 < A < A\j,w, +h, >0, in %, V0 < pu <A} (24)

Step 2. A\¥ = )y, (22) holds.
For this, the main estimate needed is:

(A +b;0; + dijO;; — &+ 5V, (wx + hy) < 0in Xy, (25)
Thus,

Ahy + b;0ihy + dijOijhy + (—¢ + 56V )hy + Ey < 0in Xy, (26)
We have hy < 0, and, (12) and a computation give us,

Cha| < CoAM |yt + CaN* M0 < CaAM, Yy,

and,
|I§,@hﬂ + ’CZanh)\| S Cg/\M];8’y| + 03/\3M,;6\y|71 + 03)\5Mk76|y’72,

< CsAM y| ™+ Cs XMy~
Thus,

|0:0iha| + |dijOisha| + |eha] < CsAM |y~ + C3N° M 2|y[~* in X,
Thus, by (21),

Ahy + b;0ihy + dijOizhy + (—¢ + 56V )by + By <

< Ahy + CoAM Y y| ™ + Cs A M 2|y~ + |Ey| <0,

because,

Ah)\ = —203)\Mk_4|y|_1 - 203)\5Mk_2|y|_4.
From the boundary condition and the definition of v and hy, we have:

C(M)

, Yyl = e My,
Y|

|ha(y)| + v (y) <
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and, thus,

wik(y) + hae(y) > 0V |y| = exM,.>,

We can use the maximum principal and the Hopf lemma to have:
Wik + hye > 0, in Xy,
and,
0 (wsk + hyx) >0, in X
—(wy, 5 in :
v Ak Ak ) A
From (25) and above we conclude that \¥ = \; and lemma 2.2 is proved.

Given any A > 0, since the sequence vy converges to U and hyx converges
to 0 on any compact subset of R?, we have:

Uly) 2 UMNy),, Vlyl =X VO<A<A.

Since A; > 0 is arbitrary, and since we can apply the same argument to
A
compare vy, and v;,”*, we have:

Uy) > UM(y),, V|ly—x|>X>0.

Thus implies that U is a constant which is a contradiction.

Proof of theorem 1.4:

From theorem 2.1 (see [3]), we have:

max u. — 0. (27)
M

We conclude with the aid of the elliptic estimates and the classical Harnack
inequality that:

< C'mi 28
max ue < Cminue, (28)
where C' is a positive constant independant of e.

Let GG, the Green function of the operator A + ¢, we have,

/MGE(a:,y)dVg(y) = %, YV xe M. (29)

We write:

infu, = u.(x,) = /M Ge(e, y)Voly)ul (y)dV, () >
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5
mqu /G Te,y)dV,(y) = (meuE),

thus,

inf u, < Che'/?, (30)
M

With the similar argument, we have :

sup u, > Che'/4. (31)
M

Finaly, we have:

Cre/t < ue(z) < Coet/* Y 2 € M. (32)

Where C] and Cy are two positive constant independant of e.
Ue

We set w. = —~, then,
€

5
Aw, + ew. = eV w?.

The theorem follow from the standard elliptic estimate, the Green function
of the lapalcian and the Green representation formula for the solutions of the
previous equation.
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