Mathematica Aeterna, Vol. 5, 2015, no. 1, 135-147

Uniqueness type result in dimension 3.

Samy Skander Bahoura
Equipe d'Analyse complexe et Geometrie
2 place Jussieu, 75005, Paris, France.

Abstract

We give some estimates of type $\sup \times \inf$ on Riemannian manifold of dimension 3 for a prescribed curvature type equation. As a consequence, we derive an uniqueness type result.

Mathematics Subject Classification: 53C21, 35J60 35B45 35B50
Keywords: $\sup \times \inf$, riemannian manifold, dimension 3, prescribed curvature, uniqueness

1 Introduction and Main Results

In this paper, we deal with the following prescribed scalar curvature type equation in dimension 3:

$$
\begin{equation*}
\Delta u+h(x) u=V(x) u^{5}, u>0 . \tag{E}
\end{equation*}
$$

Where h, V are two continuous functions. In the case $8 h=R_{g}$ the scalar curvature, we call V the prescribed scalar curvature. Here, we assume h a bounded function and $h_{0}=\|h\|_{L^{\infty}(M)}$.

We consider three positive real number a, b, A and we suppose V lipschitzian:

$$
\begin{equation*}
0<a \leq V(x) \leq b<+\infty \text { and }\|\nabla V\|_{L^{\infty}(M)} \leq A . \tag{C}
\end{equation*}
$$

The equation (E) was studied a lot, when $M=\Omega \subset \mathbb{R}^{n}$ or $M=\mathbb{S}_{n}$ see for example, [2-4], [11], [15]. In this case we have a $\sup \times$ inf inequality.

The corresponding equation in two dimensions on open set Ω of \mathbb{R}^{2}, is:

$$
\Delta u=V(x) e^{u}, \quad\left(E^{\prime}\right)
$$

The equation $\left(E^{\prime}\right)$ was studed by many authors and we can find very important result about a priori estimates in [8], [9], [12], [16], and [19]. In particular in [9] we have the following interior estimate:

$$
\sup _{K} u \leq c=c\left(\inf _{\Omega} V,\|V\|_{L^{\infty}(\Omega)}, \inf _{\Omega} u, K, \Omega\right) .
$$

And, precisely, in [8], [12], [16], and [19], we have:

$$
C \sup _{K} u+\inf _{\Omega} u \leq c=c\left(\inf _{\Omega} V,\|V\|_{L^{\infty}(\Omega)}, K, \Omega\right),
$$

and,

$$
\sup _{K} u+\inf _{\Omega} u \leq c=c\left(\inf _{\Omega} V,\|V\|_{C^{\alpha}(\Omega)}, K, \Omega\right) .
$$

where K is a compact subset of Ω, C is a positive constant which depends on $\frac{\inf _{\Omega} V}{\sup _{\Omega} V}$, and, $\alpha \in(0,1]$.

In the case $V \equiv 1$ and M compact, the equation (E) is Yamabe equation. Yamabe has tried to solve problem but he could not, see [22]. T.Aubin and R.Schoen have proved the existence of solution in this case, see for example [1] and [14] for a complete and detailed summary.

When M is a compact Riemannian manifold, there exist some compactness result for equation (E) see [18]. Li and Zhu see [18], proved that the energy is bounded and if we suppose M not diffeormorfic to the three sphere, the solutions are uniformly bounded. To have this result they use the positive mass theorem.

Now, if we suppose M Riemannian manifold (not necessarily compact) and $V \equiv 1$, Li and Zhang [17] proved that the product sup \times inf is bounded. Here we extend the result of [6].

Our proof is an extension of Brezis-Li and Li-Zhang result in dimension 3, see [7] and [17], and, the moving-plane method is used to have this estimate. We refer to Gidas-Ni-Nirenberg for the moving-plane method, see [13]. Also, we can see in [10], one of the application of this method.

Here, we give an equality of type $\sup \times$ inf for the equation (E) with general conditions (C). Note that, in our proof, we do not need a classification result for some particular elliptic PDEs on \mathbb{R}^{3}.

In dimension greater than 3 we have other type of estimates by using moving-plane method, see for example [3, 5].

There are other estimates of type sup +inf on complex Monge-Ampere equation on compact manifolds, see [20-21]. They consider, on compact Kahler manifold (M, g), the following equation:

$$
\left\{\begin{array}{l}
\left(\omega_{g}+\partial \bar{\partial} \phi\right)^{n}=e^{f-t \phi} \omega_{g}^{n} \\
\omega_{g}+\partial \bar{\partial} \phi>0 \text { on } M
\end{array}\right.
$$

And, they prove some estimates of type $\sup _{M}+m \inf _{M} \leq C$ or $\sup _{M}+m \inf _{M} \geq$ C under the positivity of the first Chern class of M.

Here, we have,
Theorem 1.1 For all compact set K of M and all positive numbers a, b, A, h_{0} there is a positive constant c, which depends only on, a, b, A, h_{0}, K, M, g such that:

$$
\sup _{K} u \times \inf _{M} u \leq c,
$$

for all u solution of (E) with conditions (C).
This theorem generalise Li-Zhang result, see $[17]$ in the case $V \equiv 1$. Here, we use Li and Zhang method in [17].

In the case $h \equiv \epsilon \in(0,1)$ and u_{ϵ} solution of :

$$
\Delta u_{\epsilon}+\epsilon u_{\epsilon}=V_{\epsilon} u_{\epsilon}^{5}, u_{\epsilon}>0
$$

We have:
Corollary 1.2 For all compact set K of M and all positive numbers a, b, A there is a positive constant c, which depends only on, a, b, A, K, M, g such that:

$$
\sup _{K} u_{\epsilon} \times \inf _{M} u_{\epsilon} \leq c,
$$

for all u solution of $\left(E_{\epsilon}\right)$ with conditions (C).
Now, if we assume M a compact riemannian manifold and $0<a \leq V_{\epsilon} \leq$ $b<+\infty$
we have:
Theorem 1.3 (see [3]). For all positive numbers a, b, m there is a positive constant c, which depends only on, a, b, m, M, g such that:

$$
\epsilon \sup _{M} u_{\epsilon} \times \inf _{M} u_{\epsilon} \geq c,
$$

for all u_{ϵ} solution of $\left(E_{\epsilon}\right)$ with

$$
\max _{M} u_{\epsilon} \geq m>0
$$

As a consequence of the two previous theorems, we have:
Theorem 1.4 For all positive numbers a, b, A we have:

$$
\max _{M} u_{\epsilon} \rightarrow 0
$$

and (up to a subsequence),

$$
\frac{\max _{M} u_{\epsilon}}{\epsilon^{1 / 4}} \rightarrow w_{0}>0, \quad \text { and }, \quad \frac{\min _{M} u_{\epsilon}}{\epsilon^{1 / 4}} \rightarrow w_{0}>0
$$

Remarks:

- It is not necessary to have $u_{\epsilon} \equiv w_{0} \epsilon^{1 / 4}$, because if we take a nonconsant function V, we can find by the variational approach a non constant positive solution of the subcritical equation:

$$
\Delta u_{\epsilon}+\epsilon u_{\epsilon}=\mu_{\epsilon} V u_{\epsilon}^{5-\epsilon}, \text { with } \mu_{\epsilon}, u_{\epsilon}>0
$$

In this case (subcritical which tends to the critical) we also have the $\sup \times \inf$ inequalities and the uniqueness type theorem.

- In fact, we prove, up to a subsequence that $\frac{u_{\epsilon}}{\epsilon^{1 / 4}}$ converge to a constant which depends on a, b and A.

2 Proof of the theorems

Proof of theorem 1.1:

We want to prove that:

$$
\begin{equation*}
\epsilon \max _{B(0, \epsilon)} u \times \min _{B(0,4 \epsilon)} u \leq c=c(a, b, A, M, g) \tag{1}
\end{equation*}
$$

We argue by contradiction and we assume that:

$$
\begin{equation*}
\max _{B\left(0, \epsilon_{k}\right)} u_{k} \times \min _{B\left(0,4 \epsilon_{k}\right)} u_{k} \geq k \epsilon_{k}^{-1} \tag{2}
\end{equation*}
$$

Step 1: The blow-up analysis

The blow-up analysis gives us :
For some $\bar{x}_{k} \in B\left(0, \epsilon_{k}\right), u_{k}\left(\bar{x}_{k}\right)=\max _{B\left(0, \epsilon_{k}\right)} u_{k}$, and, from the hypothesis,

$$
u_{k}\left(\bar{x}_{k}\right)^{2} \epsilon_{k} \rightarrow+\infty
$$

By a standard selection process, we can find $x_{k} \in B\left(\bar{x}_{k}, \epsilon_{k} / 2\right)$ and $\sigma_{k} \in$ $\left(0, \epsilon_{k} / 4\right)$ satisfying,

$$
\begin{gather*}
u_{k}\left(x_{k}\right)^{2} \sigma_{k} \rightarrow+\infty \tag{3}\\
u_{k}\left(x_{k}\right) \geq u_{k}\left(\bar{x}_{k}\right) \tag{4}
\end{gather*}
$$

and,

$$
\begin{equation*}
u_{k}(x) \leq C_{1} u_{k}\left(x_{k}\right), \text { in } B\left(x_{k}, \sigma_{k}\right), \tag{5}
\end{equation*}
$$

where C_{1} is some universal constant.
It follows from above ((2), (4)) that:

$$
\begin{equation*}
u_{k}\left(x_{k}\right) \times \min _{\partial B\left(x_{k}, 2 \epsilon_{k}\right)} u_{k} \epsilon_{k} \geq u_{k}\left(\bar{x}_{k}\right) \times \min _{B\left(0,4 \epsilon_{k}\right)} u_{k} \epsilon_{k} \geq k \rightarrow+\infty . \tag{6}
\end{equation*}
$$

We use $\left\{z^{1}, \ldots, z^{n}\right\}$ to denote some geodesic normal coordinates centered at x_{k} (we use the exponential map). In the geodesic normal coordinates, $g=g_{i j}(z) d z d z^{j}$,

$$
\begin{equation*}
g_{i j}(z)-\delta_{i j}=O\left(r^{2}\right), g:=\operatorname{det}\left(g_{i j}(z)\right)=1+O\left(r^{2}\right), h(z)=O(1) \tag{7}
\end{equation*}
$$

where $r=|z|$. Thus,

$$
\Delta_{g} u=\frac{1}{\sqrt{g}} \partial_{i}\left(\sqrt{g} g^{i j} \partial_{j} u\right)=\Delta u+b_{i} \partial_{i} u+d_{i j} \partial_{i j} u
$$

where

$$
\begin{equation*}
b_{j}=O(r), d_{i j}=O\left(r^{2}\right) \tag{8}
\end{equation*}
$$

We have a new function:

$$
v_{k}(y)=M_{k}^{-1} u_{k}\left(M_{k}^{-2} y\right) \text { for }|y| \leq 3 \epsilon_{k} M_{k}^{2}
$$

where $M_{k}=u_{k}(0)$.
From (5), (6), we have:

$$
\left\{\begin{array}{l}
\Delta v_{k}+\bar{b}_{i} \partial_{i} v_{k}+\bar{d}_{i j} \partial_{i j} v_{k}-\bar{c} v_{k}+v_{k}^{5}=0 \text { for }|y| \leq 3 \epsilon_{k} M_{k}^{2} \\
v_{k}(0)=1 \\
v_{k}(y) \leq C_{1} \text { for }|y| \leq \sigma_{k} M_{k}^{2} \\
\lim _{k \rightarrow+\infty} \min _{|y|=2 \epsilon_{k} M_{k}^{2}}\left(v_{k}(y)|y|\right)=+\infty
\end{array}\right.
$$

where C_{1} is a universal constant and

$$
\begin{equation*}
\bar{b}_{i}(y)=M_{k}^{-2} b_{i}\left(M_{k}^{-2} y\right), \bar{d}_{i j}(y)=d_{i j}\left(M_{k}^{-2} y\right) \tag{10}
\end{equation*}
$$

and,

$$
\begin{equation*}
\bar{c}(y)=M_{k}^{-4} h\left(M_{k}^{-2} y\right) \tag{11}
\end{equation*}
$$

We can see that for $|y| \leq 3 \epsilon_{k} M_{k}^{2}$, we have:

$$
\begin{equation*}
\left|\bar{b}_{i}(y)\right| \leq C M_{k}^{-4}|y|,\left|\bar{d}_{i j}(y)\right| \leq C M_{k}^{-4}|y|^{2},|\bar{c}(y)| \leq C M_{k}^{-4} \tag{12}
\end{equation*}
$$

where C depends on n, M, g.
It follows from (9), (10), (11), (12) and the elliptic estimates, that, along a subsequence, v_{k} converges in C^{2} norm on any compact subset of \mathbb{R}^{2} to a positive function U satisfying:

$$
\left\{\begin{array}{l}
\Delta U+U^{5}=0 \text { in } \mathbb{R}^{2} \tag{13}\\
U(0)=1, \quad 0<U \leq C_{1}
\end{array}\right.
$$

Step 2: The Kelvin transform and moving-plane method For $x \in \mathbb{R}^{2}$ and $\lambda>0$, let,

$$
v_{k}^{\lambda, x}(y):=\frac{\lambda}{|y-x|} v_{k}\left(x+\frac{\lambda^{2}(y-x)}{|y-x|^{2}}\right)
$$

denote the Kelvin transformation of v_{k} with respect to the ball centered at x and of radius λ.

We want to compare for fixed x, v_{k} and $v_{k}^{\lambda, x}$. For simplicity we assume $x=0$. We have:

$$
v_{k}^{\lambda}(y):=\frac{\lambda}{|y|} v_{k}\left(y^{\lambda}\right), \text { with } y^{\lambda}=\frac{\lambda^{2} y}{|y|^{2}}
$$

For $\lambda>0$, we set,

$$
\Sigma_{\lambda}=B\left(0, \epsilon_{k} M_{k}^{2}\right)-\bar{B}(0, \lambda)
$$

The boundary condition, (9), become:

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \min _{|y|=\epsilon_{k} M_{k}^{2}}\left(v_{k}(y)|y|\right)=\lim _{k \rightarrow+\infty} \min _{|y|=2 \epsilon_{k} M_{k}^{2}}\left(v_{k}(y)|y|\right)=+\infty \tag{14}
\end{equation*}
$$

We have:

$$
\begin{equation*}
\Delta v_{k}^{\lambda}+V_{k}^{\lambda}\left(v_{k}^{\lambda}\right)^{5}=E_{1}(y) \text { for } y \in \Sigma_{\lambda} \tag{15}
\end{equation*}
$$

where,

$$
\begin{equation*}
E_{1}(y)=-\left(\frac{\lambda}{|y|}\right)^{5}\left(\bar{b}_{i}\left(y^{\lambda}\right) \partial_{i} v_{k}\left(y^{\lambda}\right)+\bar{d}_{i j}\left(y^{\lambda}\right) \partial_{i j} v_{k}\left(y^{\lambda}\right)-\bar{c}\left(y^{\lambda}\right) v_{k}\left(y^{\lambda}\right)\right) . \tag{16}
\end{equation*}
$$

Clearly, from (10), (11), there exists $C_{2}=C_{2}\left(\lambda_{1}\right)$ such that,

$$
\begin{equation*}
\left|E_{1}(y)\right| \leq C_{2} \lambda^{5} M_{k}^{-4}|y|^{-5} \text { for } y \in \Sigma_{\lambda} \tag{17}
\end{equation*}
$$

Let,

$$
w_{\lambda}=v_{k}-v_{k}^{\lambda} .
$$

Here, we have, for simplicity, omitted k. We observe that by (9), (15):

$$
\begin{equation*}
\Delta w_{\lambda}+\bar{b}_{i} \partial_{i} w_{\lambda}+\bar{d}_{i j} \partial_{i j} w_{\lambda}-\bar{c} w_{\lambda}+5 \xi^{4} V_{k} w_{\lambda}=E_{\lambda} \text { in } \Sigma_{\lambda} \tag{18}
\end{equation*}
$$

where ξ stay between v_{k} and v_{k}^{λ}, and,

$$
\begin{equation*}
E_{\lambda}=-\bar{b}_{i} \partial_{i} v_{k}^{\lambda}+\bar{d}_{i j} \partial_{i j} v_{k}^{\lambda}+\bar{c} v_{k}^{\lambda}-E_{1}-\left(V_{k}-V_{k}^{\lambda}\right)\left(v_{k}^{\lambda}\right)^{5} . \tag{19}
\end{equation*}
$$

A computations give us the following two estimates:

$$
\begin{equation*}
\left|\partial_{i} v_{k}^{\lambda}(y)\right| \leq C \lambda|y|^{-2}, \text { and }\left|\partial_{i j} v_{k}^{\lambda}(y)\right| \leq C \lambda|y|^{-3} \text { in } \Sigma_{\lambda} \tag{20}
\end{equation*}
$$

From (10), (11), (20), we have,
Lemma 2.1 . For somme constant $C_{3}=C_{3}(\lambda)$

$$
\begin{equation*}
\left|E_{\lambda}\right| \leq C_{3} \lambda M_{k}^{-4}|y|^{-1}+C_{3} \lambda^{5} M_{k}^{-2}|y|^{-4} \text { in } \Sigma_{\lambda} \tag{21}
\end{equation*}
$$

we consider the following auxiliary function:

$$
h_{\lambda}=-C_{1} A M_{k}^{-2} \lambda^{2}\left(1-\frac{\lambda}{|y|}\right)+C_{2} A M_{k}^{-2} \lambda^{3}\left(1-\left(\frac{\lambda}{|y|}\right)^{2}\right)-C_{3} M_{k}^{-4} \lambda(|y|-\lambda),
$$

where C_{1}, C_{2} and C_{3} are three positive numbers.

Lemma 2.2 . We have,

$$
\begin{equation*}
w_{\lambda}+h_{\lambda} \geq 0, \text { in } \Sigma_{\lambda} \forall 0<\lambda \leq \lambda_{1} \tag{22}
\end{equation*}
$$

Proof of Lemma 2.2. We divide the proof into two steps.
Step 1. There exists $\lambda_{0, k}>0$ such that (22) holds :

$$
w_{\lambda}+h_{\lambda} \geq 0, \text { in } \Sigma_{\lambda} \forall 0<\lambda \leq \lambda_{0, k} .
$$

To see this, we write:

$$
w_{\lambda}=v_{k}(y)-v_{k}^{\lambda}(y)=\frac{1}{\sqrt{|y|}}\left(\sqrt{|y|}\left|v_{k}(y)-\sqrt{\mid} y^{\lambda}\right| v_{k}\left(y^{\lambda}\right)\right) .
$$

Note that y and y^{λ} are on the same ray starting from the origin. Let, in polar coordinates,

$$
f(r, \theta)=\sqrt{r} v_{k}(r, \theta)
$$

From the uniform convergence of v_{k}, there exists $r_{0}>0$ and $C>0$ independant of k such that,

$$
\frac{\partial f}{\partial r}(r, \theta)>C r^{-1 / 2} \text { for } 0<r<r_{0}
$$

Consequently, for $0<\lambda<|y|<r_{0}$, we have:

$$
\begin{gather*}
w_{\lambda}(y)+h_{\lambda}(y)=v_{k}(y)-v_{k}^{\lambda}(y)+h_{\lambda}(y) \\
>\frac{1}{\sqrt{r}_{0}} C \sqrt{r}_{0}^{-1 / 2}\left(|y|-\left|y^{\lambda}\right|\right)+h_{\lambda}(y) \\
>\left(\frac{C}{r_{0}}-C_{3} \lambda M_{k}^{-2}\right)(|y|-\lambda) \text { since }|y|-\left|y^{\lambda}\right|>|y|-\lambda \\
>0 \tag{23}
\end{gather*}
$$

Since,

$$
\left|h_{\lambda}(y)\right|+v_{k}^{\lambda}(y) \leq C\left(k, r_{0}\right) \lambda, \quad r_{0} \leq|y| \leq \epsilon_{k} M_{k}^{2},
$$

we can pick small $\lambda_{0, k} \in\left(0, r_{0}\right)$ such that for all $0<\lambda \leq \lambda_{0, k}$ we have,

$$
w_{\lambda}(y)+h_{\lambda}(y) \geq \min _{B\left(0, \epsilon_{k} M_{k}^{2}\right)} v_{k}-C\left(k, r_{0}\right) \lambda_{0, k}>0 \forall r_{0} \leq|y| \leq \epsilon_{k} M_{k}^{2}
$$

Step 1 follows from (23).
Let,

$$
\begin{equation*}
\bar{\lambda}^{k}=\sup \left\{0<\lambda \leq \lambda_{1}, w_{\mu}+h_{\mu} \geq 0, \text { in } \Sigma_{\mu} \forall 0<\mu \leq \lambda\right\} \tag{24}
\end{equation*}
$$

Step 2. $\bar{\lambda}^{k}=\lambda_{1}$, (22) holds.
For this, the main estimate needed is:

$$
\begin{equation*}
\left(\Delta+\bar{b}_{i} \partial_{i}+\bar{d}_{i j} \partial_{i j}-\bar{c}+5 \xi^{4} V_{k}\right)\left(w_{\lambda}+h_{\lambda}\right) \leq 0 \text { in } \Sigma_{\lambda} \tag{25}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\Delta h_{\lambda}+\bar{b}_{i} \partial_{i} h_{\lambda}+\bar{d}_{i j} \partial_{i j} h_{\lambda}+\left(-\bar{c}+5 \xi^{4} V_{k}\right) h_{\lambda}+E_{\lambda} \leq 0 \text { in } \Sigma_{\lambda} . \tag{26}
\end{equation*}
$$

We have $h_{\lambda}<0$, and, (12) and a computation give us,

$$
\left|\bar{c} h_{\lambda}\right| \leq C_{3} \lambda M_{k}^{-4}|y|^{-1}+C_{3} \lambda^{2} M_{k}^{-6} \leq C_{3} \lambda M_{k}^{-4}|y|^{-1}
$$

and,

$$
\begin{aligned}
\left|\bar{b}_{i} \partial_{i} h_{\lambda}\right|+\left|\bar{d}_{i j} \partial_{i j} h_{\lambda}\right| & \leq C_{3} \lambda M_{k}^{-8}|y|+C_{3} \lambda^{3} M_{k}^{-6}|y|^{-1}+C_{3} \lambda^{5} M_{k}^{-6}|y|^{-2} \\
\leq & C_{3} \lambda M_{k}^{-4}|y|^{-1}+C_{3} \lambda^{5} M_{k}^{-2}|y|^{-4}
\end{aligned}
$$

Thus,

$$
\left|\bar{b}_{i} \partial_{i} h_{\lambda}\right|+\left|\bar{d}_{i j} \partial_{i j} h_{\lambda}\right|+\left|\bar{c} h_{\lambda}\right| \leq C_{3} \lambda M_{k}^{-4}|y|^{-1}+C_{3} \lambda^{5} M_{k}^{-2}|y|^{-4} \text { in } \Sigma_{\lambda}
$$

Thus, by (21),

$$
\begin{aligned}
& \Delta h_{\lambda}+\bar{b}_{i} \partial_{i} h_{\lambda}+\bar{d}_{i j} \partial_{i j} h_{\lambda}+\left(-\bar{c}+5 \xi^{4} V_{k}\right) h_{\lambda}+E_{\lambda} \leq \\
& \leq \Delta h_{\lambda}+C_{3} \lambda M_{k}^{-4}|y|^{-1}+C_{3} \lambda^{5} M_{k}^{-2}|y|^{-4}+\left|E_{\lambda}\right| \leq 0
\end{aligned}
$$

because,

$$
\Delta h_{\lambda}=-2 C_{3} \lambda M_{k}^{-4}|y|^{-1}-2 C_{3} \lambda^{5} M_{k}^{-2}|y|^{-4} .
$$

From the boundary condition and the definition of v_{k}^{λ} and h_{λ}, we have:

$$
\left|h_{\lambda}(y)\right|+v_{k}^{\lambda}(y) \leq \frac{C\left(\lambda_{1}\right)}{|y|}, \quad \forall|y|=\epsilon_{k} M_{k}^{2}
$$

and, thus,

$$
w_{\bar{\lambda}^{k}}(y)+h_{\bar{\lambda}^{k}}(y)>0 \quad \forall|y|=\epsilon_{k} M_{k}^{2}
$$

We can use the maximum principal and the Hopf lemma to have:

$$
w_{\bar{\lambda}^{k}}+h_{\bar{\lambda}^{k}}>0, \text { in } \Sigma_{\lambda},
$$

and,

$$
\frac{\partial}{\partial \nu}\left(w_{\bar{\lambda}^{k}}+h_{\bar{\lambda}^{k}}\right)>0, \text { in } \Sigma_{\lambda} .
$$

From (25) and above we conclude that $\bar{\lambda}^{k}=\lambda_{1}$ and lemma 2.2 is proved.
Given any $\lambda>0$, since the sequence v_{k} converges to U and $h_{\bar{\lambda} k}$ converges to 0 on any compact subset of \mathbb{R}^{2}, we have:

$$
U(y) \geq U^{\lambda}(y),, \quad \forall|y| \geq \lambda, \quad \forall 0<\lambda<\lambda_{1} .
$$

Since $\lambda_{1}>0$ is arbitrary, and since we can apply the same argument to compare v_{k} and $v_{k}^{\lambda, x}$, we have:

$$
U(y) \geq U^{\lambda, x}(y),, \quad \forall|y-x| \geq \lambda>0
$$

Thus implies that U is a constant which is a contradiction.

Proof of theorem 1.4:

From theorem 2.1 (see [3]), we have:

$$
\begin{equation*}
\max _{M} u_{\epsilon} \rightarrow 0 \tag{27}
\end{equation*}
$$

We conclude with the aid of the elliptic estimates and the classical Harnack inequality that:

$$
\begin{equation*}
\max _{M} u_{\epsilon} \leq C \min _{M} u_{\epsilon}, \tag{28}
\end{equation*}
$$

where C is a positive constant independant of ϵ.
Let G_{ϵ} the Green function of the operator $\Delta+\epsilon$, we have,

$$
\begin{equation*}
\int_{M} G_{\epsilon}(x, y) d V_{g}(y)=\frac{1}{\epsilon}, \forall x \in M \tag{29}
\end{equation*}
$$

We write:

$$
\inf _{M} u_{\epsilon}=u_{\epsilon}\left(x_{\epsilon}\right)=\int_{M} G_{\epsilon}\left(x_{\epsilon}, y\right) V_{\epsilon}(y) u_{\epsilon}^{5}(y) d V_{g}(y) \geq
$$

$$
\geq a\left(\inf _{M} u_{\epsilon}\right)^{5} \int_{M} G_{\epsilon}\left(x_{\epsilon}, y\right) d V_{g}(y)=a \frac{\left(\inf _{M} u_{\epsilon}\right)^{5}}{\epsilon}
$$

thus,

$$
\begin{equation*}
\inf _{M} u_{\epsilon} \leq C_{1} \epsilon^{1 / 4} \tag{30}
\end{equation*}
$$

With the similar argument, we have :

$$
\begin{equation*}
\sup _{M} u_{\epsilon} \geq C_{2} \epsilon^{1 / 4} \tag{31}
\end{equation*}
$$

Finaly, we have:

$$
\begin{equation*}
C_{1} \epsilon^{1 / 4} \leq u_{\epsilon}(x) \leq C_{2} \epsilon^{1 / 4} \forall x \in M . \tag{32}
\end{equation*}
$$

Where C_{1} and C_{2} are two positive constant independant of ϵ.
We set $w_{\epsilon}=\frac{u_{\epsilon}}{\epsilon^{1 / 4}}$, then,

$$
\Delta w_{\epsilon}+\epsilon w_{\epsilon}=\epsilon V_{\epsilon} w_{\epsilon}^{5} .
$$

The theorem follow from the standard elliptic estimate, the Green function of the lapalcian and the Green representation formula for the solutions of the previous equation.

References

[1] T. Aubin. Some Nonlinear Problems in Riemannian Geometry. SpringerVerlag 1998
[2] S.S Bahoura. Majorations du type $\sup u \times \inf u \leq c$ pour l'équation de la courbure scalaire sur un ouvert de $\mathbb{R}^{n}, n \geq 3$. J. Math. Pures. Appl.(9) 83 2004 no, 9, 1109-1150.
[3] S.S. Bahoura. Harnack inequalities for Yamabe type equations. Bull. Sci. Math. 133 (2009), no. 8, 875-892
[4] S.S. Bahoura. Lower bounds for sup $+\inf$ and $\sup \times \inf$ and an extension of Chen-Lin result in dimension 3. Acta Math. Sci. Ser. B Engl. Ed. 28 (2008), no. 4, 749-758
[5] S.S. Bahoura. Estimations uniformes pour l'equation de Yamabe en dimensions 5 et 6 . J. Funct. Anal. 242 (2007), no. 2, 550-562.
[6] S.S. Bahoura. $\sup \times$ inf inequality on manifold of dimension 3, to appear in MATHEMATICA AETERNA
[7] H. Brezis, YY. Li. Some nonlinear elliptic equations have only constant solutions. J. Partial Differential Equations 19 (2006), no. 3, 208-217.
[8] H. Brezis, YY. Li, I. Shafrir. A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities. J.Funct.Anal. 115 (1993) 344-358.
[9] H.Brezis and F.Merle, Uniform estimates and blow-up bihavior for solutions of $-\Delta u=V e^{u}$ in two dimensions, Commun Partial Differential Equations 16 (1991), 1223-1253.
[10] L. Caffarelli, B. Gidas, J. Spruck. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 37 (1984) 369-402.
[11] C-C.Chen, C-S. Lin. Estimates of the conformal scalar curvature equation via the method of moving planes. Comm. Pure Appl. Math. L(1997) 09711017.
[12] C-C.Chen, C-S. Lin. A sharp sup+inf inequality for a nonlinear elliptic equation in \mathbb{R}^{2}. Commun. Anal. Geom. 6, No.1, 1-19 (1998).
[13] B. Gidas, W-Y. Ni, L. Nirenberg. Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), no. 3, 209-243.
[14] J.M. Lee, T.H. Parker. The Yamabe problem. Bull.Amer.Math.Soc (N.S) 17 (1987), no.1, 37-91.
[15] YY. Li. Prescribing scalar curvature on \mathbb{S}_{n} and related Problems. C.R. Acad. Sci. Paris 317 (1993) 159-164. Part I: J. Differ. Equations 120 (1995) 319-410. Part II: Existence and compactness. Comm. Pure Appl.Math. 49 (1996) 541-597.
[16] YY. Li. Harnack Type Inequality: the Method of Moving Planes. Commun. Math. Phys. 200,421-444 (1999).
[17] YY. Li, L. Zhang. A Harnack type inequality for the Yamabe equation in low dimensions. Calc. Var. Partial Differential Equations 20 (2004), no. 2, 133-151.
[18] YY.Li, M. Zhu. Yamabe Type Equations On Three Dimensional Riemannian Manifolds. Commun.Contem.Mathematics, vol 1. No. 1 (1999) 1-50.
[19] I. Shafrir. A sup + inf inequality for the equation $-\Delta u=V e^{u}$. C. R. Acad.Sci. Paris Sér. I Math. 315 (1992), no. 2, 159-164.
[20] Y-T. Siu. The existence of Kahler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group. Ann. of Math. (2) 127 (1988), no. 3, 585-627
[21] G. Tian. A Harnack type inequality for certain complex Monge-Ampere equations. J. Differential Geom. 29 (1989), no. 3, 481-488.
[22] Yamabe, H. On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 121960 21-37.

Received: January, 2015

