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Uniqueness type result in dimension 3.
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Abstract

We give some estimates of type sup× inf on Riemannian manifold of

dimension 3 for a prescribed curvature type equation. As a consequence,

we derive an uniqueness type result.
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1 Introduction and Main Results

In this paper, we deal with the following prescribed scalar curvature type
equation in dimension 3:

∆u+ h(x)u = V (x)u5, u > 0. (E)

Where h, V are two continuous functions. In the case 8h = Rg the scalar
curvature, we call V the prescribed scalar curvature. Here, we assume h a
bounded function and h0 = ||h||L∞(M).

We consider three positive real number a, b, A and we suppose V lips-
chitzian:

0 < a ≤ V (x) ≤ b < +∞ and ||∇V ||L∞(M) ≤ A. (C)

The equation (E) was studied a lot, when M = Ω ⊂ Rn or M = Sn see for
example, [2-4], [11], [15]. In this case we have a sup× inf inequality.

The corresponding equation in two dimensions on open set Ω of R2, is:
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∆u = V (x)eu, (E ′)

The equation (E ′) was studed by many authors and we can �nd very impor-
tant result about a priori estimates in [8], [9], [12], [16], and [19]. In particular
in [9] we have the following interior estimate:

sup
K
u ≤ c = c(inf

Ω
V, ||V ||L∞(Ω), inf

Ω
u,K,Ω).

And, precisely, in [8], [12], [16], and [19], we have:

C sup
K
u+ inf

Ω
u ≤ c = c(inf

Ω
V, ||V ||L∞(Ω), K,Ω),

and,

sup
K
u+ inf

Ω
u ≤ c = c(inf

Ω
V, ||V ||Cα(Ω), K,Ω).

where K is a compact subset of Ω, C is a positive constant which depends

on
infΩ V

supΩ V
, and, α ∈ (0, 1].

In the case V ≡ 1 and M compact, the equation (E) is Yamabe equation.
Yamabe has tried to solve problem but he could not, see [22]. T.Aubin and
R.Schoen have proved the existence of solution in this case, see for example
[1] and [14] for a complete and detailed summary.

WhenM is a compact Riemannian manifold, there exist some compactness
result for equation (E) see [18]. Li and Zhu see [18], proved that the energy
is bounded and if we suppose M not di�eormor�c to the three sphere, the
solutions are uniformly bounded. To have this result they use the positive
mass theorem.

Now, if we supposeM Riemannian manifold (not necessarily compact) and
V ≡ 1, Li and Zhang [17] proved that the product sup× inf is bounded. Here
we extend the result of [6].

Our proof is an extension of Brezis-Li and Li-Zhang result in dimension 3,
see [7] and [17], and, the moving-plane method is used to have this estimate.
We refer to Gidas-Ni-Nirenberg for the moving-plane method, see [13]. Also,
we can see in [10], one of the application of this method.

Here, we give an equality of type sup× inf for the equation (E) with general
conditions (C). Note that, in our proof, we do not need a classi�cation result
for some particular elliptic PDEs on R3.

In dimension greater than 3 we have other type of estimates by using
moving-plane method, see for example [3, 5].
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There are other estimates of type sup + inf on complex Monge-Ampere
equation on compact manifolds, see [20-21] . They consider, on compact Kahler
manifold (M, g), the following equation:{

(ωg + ∂∂̄φ)n = ef−tφωng ,

ωg + ∂∂̄φ > 0 on M

And, they prove some estimates of type supM +m infM ≤ C or supM +m infM ≥
C under the positivity of the �rst Chern class of M.

Here, we have,

Theorem 1.1 For all compact setK ofM and all positive numbers a, b, A, h0

there is a positive constant c, which depends only on, a, b, A, h0, K,M, g such
that:

sup
K
u× inf

M
u ≤ c,

for all u solution of (E) with conditions (C).

This theorem generalise Li-Zhang result, see [17] in the case V ≡ 1. Here,
we use Li and Zhang method in [17].

In the case h ≡ ε ∈ (0, 1) and uε solution of :

∆uε + εuε = Vεu
5
ε , uε > 0. (Eε)

We have:

Corollary 1.2 For all compact set K of M and all positive numbers a, b, A
there is a positive constant c, which depends only on, a, b, A,K,M, g such that:

sup
K
uε × inf

M
uε ≤ c,

for all u solution of (Eε) with conditions (C).

Now, if we assume M a compact riemannian manifold and 0 < a ≤ Vε ≤
b < +∞

we have:

Theorem 1.3 (see [3]). For all positive numbers a, b,m there is a positive
constant c, which depends only on, a, b,m,M, g such that:

ε sup
M

uε × inf
M
uε ≥ c,
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for all uε solution of (Eε) with

max
M

uε ≥ m > 0

.

As a consequence of the two previous theorems, we have:

Theorem 1.4 For all positive numbers a, b, A we have:

max
M

uε → 0,

and (up to a subsequence),

maxM uε
ε1/4

→ w0 > 0, and,
minM uε
ε1/4

→ w0 > 0.

Remarks:

• It is not necessary to have uε ≡ w0ε
1/4, because if we take a noncon-

sant function V , we can �nd by the variational approach a non constant
positive solution of the subcritical equation:

∆uε + εuε = µεV u
5−ε
ε , with µε, uε > 0.

In this case (subcritical which tends to the critical) we also have the
sup× inf inequalities and the uniqueness type theorem.

• In fact, we prove, up to a subsequence that
uε
ε1/4

converge to a constant

which depends on a, b and A.

2 Proof of the theorems

Proof of theorem 1.1:

We want to prove that:

ε max
B(0,ε)

u× min
B(0,4ε)

u ≤ c = c(a, b, A,M, g) (1)

We argue by contradiction and we assume that:

max
B(0,εk)

uk × min
B(0,4εk)

uk ≥ kεk
−1 (2)
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Step 1: The blow-up analysis

The blow-up analysis gives us :
For some x̄k ∈ B(0, εk), uk(x̄k) = maxB(0,εk) uk, and, from the hypothesis,

uk(x̄k)
2εk → +∞.

By a standard selection process, we can �nd xk ∈ B(x̄k, εk/2) and σk ∈
(0, εk/4) satisfying,

uk(xk)
2σk → +∞, (3)

uk(xk) ≥ uk(x̄k), (4)

and,

uk(x) ≤ C1uk(xk), in B(xk, σk), (5)

where C1 is some universal constant.
It follows from above ( (2), (4)) that:

uk(xk)× min
∂B(xk,2εk)

ukεk ≥ uk(x̄k)× min
B(0,4εk)

ukεk ≥ k → +∞. (6)

We use {z1, . . . , zn} to denote some geodesic normal coordinates centered
at xk (we use the exponential map). In the geodesic normal coordinates,
g = gij(z)dzdzj,

gij(z)− δij = O(r2), g := det(gij(z)) = 1 +O(r2), h(z) = O(1), (7)

where r = |z|. Thus,

∆gu =
1
√
g
∂i(
√
ggij∂ju) = ∆u+ bi∂iu+ dij∂iju,

where

bj = O(r), dij = O(r2) (8)

We have a new function:

vk(y) = M−1
k uk(M

−2
k y) for |y| ≤ 3εkM

2
k

where Mk = uk(0).
From (5), (6), we have:
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∆vk + b̄i∂ivk + d̄ij∂ijvk − c̄vk + vk

5 = 0 for |y| ≤ 3εkM
2
k

vk(0) = 1

vk(y) ≤ C1 for |y| ≤ σkM
2
k

limk→+∞min|y|=2εkM
2
k
(vk(y)|y|) = +∞ (9)

where C1 is a universal constant and

b̄i(y) = M−2
k bi(M

−2
k y), d̄ij(y) = dij(M

−2
k y) (10)

and,

c̄(y) = M−4
k h(M−2

k y) (11)

We can see that for |y| ≤ 3εkM
2
k , we have:

|b̄i(y)| ≤ CM−4
k |y|, |d̄ij(y)| ≤ CM−4

k |y|
2, |c̄(y)| ≤ CM−4

k (12)

where C depends on n,M, g.

It follows from (9), (10), (11), (12) and the elliptic estimates, that, along
a subsequence, vk converges in C2 norm on any compact subset of R2 to a
positive function U satisfying:

{
∆U + U5 = 0 in R2

U(0) = 1, 0 < U ≤ C1 (13)

Step 2: The Kelvin transform and moving-plane method
For x ∈ R2 and λ > 0, let,

vλ,xk (y) :=
λ

|y − x|
vk

(
x+

λ2(y − x)

|y − x|2

)
denote the Kelvin transformation of vk with respect to the ball centered at

x and of radius λ.

We want to compare for �xed x, vk and vλ,xk . For simplicity we assume
x = 0. We have:

vλk (y) :=
λ

|y|
vk(y

λ), with yλ =
λ2y

|y|2

For λ > 0, we set,

Σλ = B
(
0, εkMk

2
)
− B̄(0, λ).
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The boundary condition, (9), become:

lim
k→+∞

min
|y|=εkM2

k

(vk(y)|y|) = lim
k→+∞

min
|y|=2εkM

2
k

(vk(y)|y|) = +∞ (14)

We have:

∆vλk + V λ
k (vλk )5 = E1(y) for y ∈ Σλ (15)

where,

E1(y) = −
(
λ

|y|

)5 (
b̄i(y

λ)∂ivk(y
λ) + d̄ij(y

λ)∂ijvk(y
λ)− c̄(yλ)vk(yλ)

)
. (16)

Clearly, from (10), (11), there exists C2 = C2(λ1) such that,

|E1(y)| ≤ C2λ
5M−4

k |y|
−5 for y ∈ Σλ (17)

Let,

wλ = vk − vλk .
Here, we have, for simplicity, omitted k. We observe that by (9), (15):

∆wλ + b̄i∂iwλ + d̄ij∂ijwλ − c̄wλ + 5ξ4Vkwλ = Eλ in Σλ (18)

where ξ stay between vk and v
λ
k , and,

Eλ = −b̄i∂ivλk + d̄ij∂ijv
λ
k + c̄vλk − E1 − (Vk − V λ

k )(vλk )5. (19)

A computations give us the following two estimates:

|∂ivλk (y)| ≤ Cλ|y|−2, and |∂ijvλk (y)| ≤ Cλ|y|−3 in Σλ (20)

From (10), (11), (20), we have,

Lemma 2.1 . For somme constant C3 = C3(λ)

|Eλ| ≤ C3λM
−4
k |y|

−1 + C3λ
5M−2

k |y|
−4 in Σλ (21)

we consider the following auxiliary function:

hλ = −C1AM
−2
k λ2

(
1− λ

|y|

)
+C2AM

−2
k λ3

(
1−

(
λ

|y|

)2
)
−C3M

−4
k λ(|y|−λ),

where C1, C2 and C3 are three positive numbers.
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Lemma 2.2 . We have,

wλ + hλ ≥ 0, in Σλ ∀0 < λ ≤ λ1 (22)

Proof of Lemma 2.2. We divide the proof into two steps.

Step 1. There exists λ0,k > 0 such that (22) holds :

wλ + hλ ≥ 0, in Σλ ∀0 < λ ≤ λ0,k.

To see this, we write:

wλ = vk(y)− vλk (y) =
1√
|y|

(√
|y|vk(y)−

√
|yλ|vk(yλ)

)
.

Note that y and yλ are on the same ray starting from the origin. Let, in
polar coordinates,

f(r, θ) =
√
rvk(r, θ).

From the uniform convergence of vk, there exists r0 > 0 and C > 0 inde-
pendant of k such that,

∂f

∂r
(r, θ) > Cr−1/2 for 0 < r < r0.

Consequently, for 0 < λ < |y| < r0, we have:

wλ(y) + hλ(y) = vk(y)− vλk (y) + hλ(y),

>
1√
r0

C
√
r0
−1/2

(|y| − |yλ|) + hλ(y)

> (
C

r0

− C3λM
−2
k )(|y| − λ) since |y| − |yλ| > |y| − λ

> 0. (23)

Since,

|hλ(y)|+ vλk (y) ≤ C(k, r0)λ, r0 ≤ |y| ≤ εkMk
2,

we can pick small λ0,k ∈ (0, r0) such that for all 0 < λ ≤ λ0,k we have,

wλ(y) + hλ(y) ≥ min
B(0,εkM

2
k )
vk − C(k, r0)λ0,k > 0 ∀ r0 ≤ |y| ≤ εkMk

2
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Step 1 follows from (23).

Let,

λ̄k = sup{0 < λ ≤ λ1, wµ + hµ ≥ 0, in Σµ ∀0 < µ ≤ λ} (24)

Step 2. λ̄k = λ1, (22) holds.
For this, the main estimate needed is:

(∆ + b̄i∂i + d̄ij∂ij − c̄+ 5ξ4Vk)(wλ + hλ) ≤ 0 in Σλ (25)

Thus,

∆hλ + b̄i∂ihλ + d̄ij∂ijhλ + (−c̄+ 5ξ4Vk)hλ + Eλ ≤ 0 in Σλ. (26)

We have hλ < 0, and, (12) and a computation give us,

|c̄hλ| ≤ C3λM
−4
k |y|

−1 + C3λ
2M−6

k ≤ C3λM
−4
k |y|

−1,

and,

|b̄i∂ihλ|+ |d̄ij∂ijhλ| ≤ C3λM
−8
k |y|+ C3λ

3M−6
k |y|

−1 + C3λ
5M−6

k |y|
−2,

≤ C3λM
−4
k |y|

−1 + C3λ
5M−2

k |y|
−4

Thus,

|b̄i∂ihλ|+ |d̄ij∂ijhλ|+ |c̄hλ| ≤ C3λM
−4
k |y|

−1 + C3λ
5M−2

k |y|
−4 in Σλ

Thus, by (21),

∆hλ + b̄i∂ihλ + d̄ij∂ijhλ + (−c̄+ 5ξ4Vk)hλ + Eλ ≤

≤ ∆hλ + C3λM
−4
k |y|

−1 + C3λ
5M−2

k |y|
−4 + |Eλ| ≤ 0,

because,

∆hλ = −2C3λM
−4
k |y|

−1 − 2C3λ
5M−2

k |y|
−4.

From the boundary condition and the de�nition of vλk and hλ, we have:

|hλ(y)|+ vλk (y) ≤ C(λ1)

|y|
, ∀ |y| = εkMk

2,
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and, thus,

wλ̄k(y) + hλ̄k(y) > 0 ∀ |y| = εkMk
2,

We can use the maximum principal and the Hopf lemma to have:

wλ̄k + hλ̄k > 0, in Σλ,

and,

∂

∂ν
(wλ̄k + hλ̄k) > 0, in Σλ.

From (25) and above we conclude that λ̄k = λ1 and lemma 2.2 is proved.

Given any λ > 0, since the sequence vk converges to U and hλ̄k converges
to 0 on any compact subset of R2, we have:

U(y) ≥ Uλ(y), , ∀ |y| ≥ λ, ∀ 0 < λ < λ1.

Since λ1 > 0 is arbitrary, and since we can apply the same argument to
compare vk and v

λ,x
k , we have:

U(y) ≥ Uλ,x(y), , ∀ |y − x| ≥ λ > 0.

Thus implies that U is a constant which is a contradiction.

Proof of theorem 1.4:

From theorem 2.1 (see [3]), we have:

max
M

uε → 0. (27)

We conclude with the aid of the elliptic estimates and the classical Harnack
inequality that:

max
M

uε ≤ C min
M

uε, (28)

where C is a positive constant independant of ε.

Let Gε the Green function of the operator ∆ + ε, we have,∫
M

Gε(x, y)dVg(y) =
1

ε
, ∀ x ∈M. (29)

We write:

inf
M
uε = uε(xε) =

∫
M

Gε(xε, y)Vε(y)u5
ε(y)dVg(y) ≥
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≥ a(inf
M
uε)

5

∫
M

Gε(xε, y)dVg(y) = a
(infM uε)

5

ε
,

thus,

inf
M
uε ≤ C1ε

1/4. (30)

With the similar argument, we have :

sup
M

uε ≥ C2ε
1/4. (31)

Finaly, we have:

C1ε
1/4 ≤ uε(x) ≤ C2ε

1/4 ∀ x ∈M. (32)

Where C1 and C2 are two positive constant independant of ε.

We set wε =
uε
ε1/4

, then,

∆wε + εwε = εVεw
5
ε .

The theorem follow from the standard elliptic estimate, the Green function
of the lapalcian and the Green representation formula for the solutions of the
previous equation.
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