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Abstract

In this paper we show the existence of common fixed points of self-
mappings defined on the bo-metric spaces. This is done by using the
contractive condition and quasi-contractive condition defined via a com-
parison function.
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1 Introduction

Over the last fifty years, the fixed point theory has been proved to be a very
powerful and important tool for the study on the nonlinear phenomena.

After the contractive principle was proved by Bnanch[l] in 1922, there
appeared many other works on the fixed theory under different contractive
conditions on spaces such as: quasi-metric spaces[2, 3], G-metric spaces|],
Menger spaces|5], metric-type spaces[6] and fuzzy metric spaces[7, 8, 9]. Tt
has becomed one of the research activity centers to study the fixed points of
the mappings which satisfy certain contractive or quasi-contractive condition.
The follows are some concise statements about it.

The notion of a b-metric space was first introduced by Czerwik in [10, 11]
and then many fixed point results were obtained for single or multi-valued
mappings by Czerwik and many other authors. On the other hand, the no-
tion of 2-metric space was introduced by Gahler in[12], having the area of a
triangle in R? as an inspirative example. Similarly, several fixed point results
were also obtained for mappings defined on these kind of spaces[13, 14]. Later,
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Zead Mustafa[l5] introduced a new type of generalized metric spaces, called by-
metric spaces, as a generalization of both 2-metric and b-metric spaces. Some
fixed point theorems were then raised under various contractive conditions in
partially ordered by-metric spaces. Among these conditions there are condi-
tions using comparison functions and almost generalized weakly contractive
conditions.

The purpose of this paper is to consider the common fixed points of a family
of self-mappings on the by-metric spaces. The method is to use the contractive
or quasi-contractive condition defined by means of a comparison function.

2 Preliminary Notes

Before stating our main results, we introduce some necessary definitions as
follows.

Definition 2.1. [10, 11] Let X be a non-empty set and s > 1 be a given real
number. A function d : X x X — R* is a b-metric on X if for all x,y,z € X,
the following conditions hold:

(1). d(z,y) =0 if and only if x = y.
(2). d(z,y) = d(y, z).
(3). d(z, z) < s[d(z,y) + d(y, 2)].

In this case, the pair (X,d) is called a b-metric space.

Definition 2.2. [12] Let X be a non-empty set and let d: X x X x X — R
be a map satisfying the following conditions:
(1). For every pair of distinct points x,y € X, there exists a point z € X such
that d(x,y, z) # 0.
(2). If at least two of three points x,y, z are the same, then d(z,y,z) = 0.
(3). The symmetry: d(z,y,z) =d(z, z,y) = d(y,z,z) = d(y, z,x) = d(z,2,y) =
d(z,y,x) for all z,y,z € X.
(4). The rectangle inequality: d(x,y,z) < d(x,y,a) + d(y, z,a) + d(z,x,a) for
all x,y, z,a € X.
Then d is called a 2-metric on X and (X,d) is called a 2-metric space.

Definition 2.3. [15] Let X be a non-empty set, s > 1 be a real number and
let d: X x X x X — R be a map satisfying the following conditions:
(1). For every pair of distinct points x,y € X, there exists a point z € X such
that d(x,y, z) # 0.
(2). If at least two of three points x,y, z are the same, then d(z,y,z) = 0.
(3). The symmetry: d(z,y,z) = d(z, z,y) = d(y,x,z) = d(y, z,x) = d(z,z,y) =
d(z,y,z) for all z,y,z € X.
(4). The rectangle inequality: d(x,y,z) < s[d(x,y,a) + d(y,z,a) + d(z,z,a)]
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forall z,y,z,a € X.
Then d is called a by-metric on X and (X, d) is called a by-metric space with
parameter s. Obuviously, for s =1, by-metric reduces to 2-metric.

Definition 2.4. [15] Let {x,} be a sequence in a by-metric space (X, d).
(1). A sequence {x,} is said to be by-convergent to x € X, written aslim,, o z, =
x, if for all a € X, lim,,_yoo d(x,, z,a) = 0.
(2). {x,} is Cauchy sequence if and only if d(x,, Ty, a) — 0, when n,m — oo.
(3). (X,d) is said to be by-complete if every be-Cauchy sequence is a by-
convergent sequence.

Definition 2.5. [15] Let (X, d) and (X', d") be two by-metric spaces and left
f:X — X' be a mapping. Then [ is said to be by-continuous at a point z € X
if for a given € > 0, there exists 6 > 0 such that x € X and d(z,x,a) < 0 for
all a € X imply that d'(fz, fr.a) < e. The mapping f is by-continuous on X
if it 1s by-continuous at all z € X.

Definition 2.6. [15] Let (X, d) and (X', d") be two by-metric spaces. Then
a mapping f: X — X' is by-continuous at a point x € X if and only if it is
by-sequentially continuous at x; that is , whenever {x,}is by-convergent to x,
{fx,}is by-convergent to f(x).

Definition 2.7. [10] Let s > 1 be a constant. A mapping ¢: [0,4+00) —
[0, 4+00) is called comparison function with base s > 1, if the following two
axioms are fulfilled:

(a) ¢ is non-decreasing,
(b) lim,,, o " (t) = 0 for all t > 0.
Clearly, if v is a comparison function, then o(t) <t for each t > 0.

3 Main Results

These are the main results of the paper.

Lemma 3.1. Let (X,d) be a by-metric space with a constant s > 1 exist
a sequence {x,}. Suppose that there is a constant L < 1—}FS and a comparison
function ¢ such that the inequality

Sd(T;‘l', TYj?Ja a’) S gp(max{sd(x, Exa a’)) Sd(ya ij, a)a L[d(l‘v T‘]y, a)—i_d(j—‘ll’a Y, CL)]})
(1)

holds for each x,y,a € X and n € N. Then {x,} is Cauchy sequence.

Proof. For a given point zq € X, we inductively define a sequence {z,} by

Tpt1 = Tn+1xn, n € N. (2)
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We claim that
d(xp, Tpst1, Tnyo) = 0, for alln € N. (3)

From the contraction condition (1), there is

Sd(l'n, Tn+1, xn+2) :Sd(TnJrlxna Tn+2xn+17 xn)
S@(maX{Sd@m Tn—f—lxn) xn)a Sd(l‘n-{—la Tn+2xn+17 xn)a
Lld(zn, ThyoTni1, Tn) + d(Ts1%0, Tsr, Tn)})

— p{sd(Enszs Tni 7).

Suppose that d(z,41, Tpi2,,) > 0. Since @(t) < t for all £ > 0, then we
have

Sd(l‘na Tp+41, :L‘n+2) S @(Sd(l‘n-l—% Tn+1, xn) < Sd(xn—i—% Ln+1, xn)

This is a contradiction. Therefore d(z,,, z,11, T, 12) = 0.
We claim that

Sd(Tp, Tpy1,a) < @(sd(Tp_1,xn,a)), for alla € X, n € N. (4)
First we have

Sd(Tpy1, Tnya) =sd(Thi12n, Thx, 1, a)
<p(max{sd(x,, Tyi17n,a), sd(x, 1, Thx, 1, a),
Lld(zy, Thxn—1,a) + d(Thi12n, xn_1,a)]})
=p(max{sd(x,11, Tn,a), sd(x,_1, Ty, a),
Ld(zpi1,Tn1,a)}).

Using the triangle inequality and L < %, we get

SA(Tpy1, Tn, a) <p(max{sd(z,, Tpi1,a), sd(x,_1,2,,a),
Ls[d(l‘n-‘,—l) Tn—1, xn) + d(l‘n—la Ly a) + d(xn—f—l) L,y a)]})
<p(max{sd(r,, tpi1,a), sd(x, 1, 2,,a),
s
5 [d(anrla Ly CL) + d(xnfla Ly a)]})
=p(max{sd(x,, Tni1,0a),sd(xy,_1,Tn,a)}).

Suppose that max{sd(x,, 1, a), sd(zp_1,xn,a)} = sd(x,, x,11,a). Then ac-
cording to the property(a) of ¢ in Definition 1.7, there is

SAd(Tpi1, T, a) < @(sd(Tp, Tpi1,a)) < sd(Tp, Tpit,a).
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which is a contradiction. Thus by the above inequality we have
Sd(l‘n-ﬁ-la L, a’) S @(Sd(xn—ly T, a))

Hence the inequality (4) holds for all n € N.
From (4), it is easy to inductively show that

Sd(Tpi1, Tn,a) < " (sd(xg, x1,a)), for alla € X, n € N. (5)
Since lim,, o ¢™(t) = 0 for all t > 0, from (5) it follows

lim d(z,11,2,,a) =0, for alla € X. (6)

n—oo

Now we go on to show that {z,,} is a Cauchy sequence.
Let € > 0. Since L < T implies s —2L > 0 and 1 — L(1 +s) > 0, by (6) we
can easily deduce that there exists ny € N such that

1—L—1Ls

d(Tp-1, Tn,a) <
(Tp_1,Tn,a) 5%

e <eg, foralln > ng, a € X. (7)

Let m,n € N with m > n. We claim that
d(xp, Tm,a) < e, for allm >n >ng, a € X. (8)

This is done by induction on m.
Let n > ng and m =n + 1. Then from (4) and (7) we get

1—-L—-L
(T, Ty @) = d(x, Tpy1,a) < d(Tp_1, Ty, a) < — 55 <e.
S

Thus (8) holds for m =n + 1.

Assume now that (8) holds for some m > n + 1. We will show that (8) holds
for m + 1.

From the contractive condition (1) and (2) there is

Sd(Tp, Tmy1, ) =sd(Tyxn_1, Tyni1Tm, a)
<p(max{sd(z,_1, Thxn_1,a), $d(Tm, Tyni1Tm,a),

L[ (:L‘n 1 m+1xm7 )+d(TnfL‘n—lyxm7a>]})
=p(max{sd(x,_1, Tpn,a), SA(Ty, Tmi1,a),

Ld(zn—, Tmi1, a) + d(@n, Tm, a)]})
=p(max{sd(x,_1,Tn,a), L[d(xy_1, Tmyi1,a) + d(xp, T, a)]}).

By (4) and ¢(t) <t for all £ > 0, then we get

SA(Zp, i1, a) < max{sd(z,_1, T, a), L[d(Tp_1, Tmi1,a)+d(zn, T, a)l}. (9)
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If from (9) we have sd(z,, Tmi1,a) < sd(Ty—1, Ty, a), then by (7) there is

1-L—-L
(T, Ty, a) < d(Tp_1, Ty, a) < 2785 <e.
s

If (9) implies sd(x,,, Tymi1,a) < Lld(Tn—1, Tmi1,a) + d(Ty, T, a)], then by the
triangle inequality, there is

SA(Tp, Tymy1,a) < L{sd(xp_1, %, a)+sd(Xpy, Ty, a)+5d(Tn, Tn_1, Tma1)+d (T, T, a)].

Now we turn to prove that d(z,, z,_1, Zms1) = 0.
From (3) we have d(z,, x,11,Tn12) = 0 for all n € N. Thus we can get

d(l‘n—la Ly xn+2) Ss[d(l‘n—la L,y xn-{—l) + d(l‘na Tn+2, :L‘n-l—l) + d(xn—lv Tp+2, xn—l—l)]
=8d(Tp—1, Tny1; Tnya)
SSd(xn—la T, xn—f—l)
=0.

Similarly, we can get d(z,_1, Zp, Tmi1) = 0.
Thus sd(zy, Tmi1,a) < Lisd(xp_1,xn, a) + sd(xp, Tpmy1, a) + d(x,, Tm, a)].
Since L < 1%3 implies % <2L <1< s, we get

L 1
d(xm Tm41, a) <ﬁ[d(xn717 Tn, a) + —d(.’L’n, T,y a)]
— S

1
<L2L[d(xp-1,Tn,a) + gd(xn, T, @)).

Now by (7) and the inductive hypothesis (8), there is

1—L—Ls 2L
———¢

d(xp, Ty, a) <2L + —¢
2s S
1—-2L—L(s—1) 2L
< e+ —=¢
S S
1-2L 2L
< €+ —e¢e.
S S

Thus we have proved that (8) holds for m + 1.
From (8) it follows that {z,} is a Cauchy sequence. O

By Lemma 3.1, we get the following the fixed point theorem.

Theorem 3.2. Let (X,d) be a complete by-metric space with a constant
s > 1 and a family of self-mappings on X, written as {T;},.y. Suppose that
there is a sequence {x,} satisfy Lemma 8.1. Then {T;},. have a unique
common fized point.
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Proof. By Lemma 3.1, we have {z,} is a Cauchy sequence. Since (X,d) is a
complete by - metric space, then {x,} converges to some u € X when n — oc.
For any fixed n € N, we select sufficiently large m € N with m > n.

Now from the contractive condition (1) and (2), we have

sd(u, Tyu, a) =sd(Tmi12m, Thu, a)
<p(max{sd(zm, Tni1Tm,a), sd(u, T,u, a),
Lld(zp, Thu, a) + d(Ti12m, u, a)l})
=p(max{sd(zm, Tmi1,a), sd(T u,u,a),
Lld(zp, Thu, a) + d(zpmi1,u, a)]}).

Let m — 400, we have x,, — u, thus sd(u, T,u,a) < ¢(sd(T,u,u,a)). If we
suppose that d(T,u,u,a) > 0, then we have

sd(u, Tyu, a) < o(sd(Tyu,u,a)) < sd(T,u,u,a).

which is a contradiction. Therefore there is d(7,u, u, a) = 0 and hence u = T, u.
Thus we have proved that u is the common fixed point of the {T;};en.

Now suppose that v and v are two different common fixed points of {T;}en,
from Definition 2.2(1), we have d(u,v,a) > 0 where a € X and a # u,v. Then

sd(u,v,a) =sd(Tyu, Thv, a)
<p(max{sd(u, T\u,a), sd(v, Tyv,a), L{d(u, Toyv, a) + d(Tiu, v, a)|})
—p(L{d(u, v,0) + d(u, v, 0))
<p(sd(u,v,a)).

Thus we have sd(u, v, a) < ¢(sd(u,v,a)) < sd(u, v, a) which is a contradiction.
So, we have proved that {7}};cn have a unique common fixed point in X. O

Example 3.3. Let X = {(a,0) : a € [0,+00)} U{(0,2)} C R? , d(z,y, 2)
denote the square of the area of triangle with vertices x,y,z € X, e.g.,

d((@,0),(5,0),(0,2)) = (a — B>2

It is easy to check that d is a by-metric with parameter s = 2. Consider the
mappings {T; }ien : X — X given by

a
—,0), 1 # 0
for all o € [0,400), Ti(e,0) = (42 ) 4
(0,0, i=0.

7:(0,2) = (0,0), i € N, and L = i < Flw comparison function p(t) = %t.

Finally, in order to check the contractive condition, only the case when
r=(,0), y=1(8,0), a=(0,2) is nontrivial.
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Casel, 15 # 0.
sd(Tia, Ty, a) = 24((5.0) (45,0),(0.2)
o B

— 2% - Ly

< max{g, 682}

< max{%az, %ﬁQ}

< §max{(a - g)2 (8- E)Q}

-2 44”7 45

3 B

= ZmaX{Qd((avo)’(ZZwO) ( ))72d(( ) (4j70)’(072))}

= p(max{sd(z, Tix, a), sd(y, Tjy, a) })
< p(max{sd(z, Tiw, a), sd(y, Tyy, a), Lld(x, Ty, a) + d(Tiz, y, a)]})-

Thus we check that (1) holds forij # 0.
Case2, i =10, j #0.

sd(Tie. Ty,0) = 24((0.0),(1.0),(0.2)
B B
=2(0— 4_]')2
s
- 8
7 . 3. B
3—252 5(5 - 4_j)2
3
< 5 max{(a— 0%, (8~ 17}
3 p

= 5 max{2d((a, 0), (0,0), (0,2)),2d((5,0), (> 5 ,0),(0,2))}

- gp(max{sd(m, T‘il’a a’)v Sd( Jyv )})

< p(max{sd(x, Ty, a), sd(y, Ty, a), L{d(z, Ty, a) + d(Tie, y, a)]}).
Thus we check that (1) holds for i =0,j # 0.
Case3, 1 # 0, 7 = 0. The proof of (1) in this case is similar to one given in
Case2.
Case/, 1=10, 7=0.
sd(Tyz, Tyy, a) = 2d((0,0), (0,0), (0,2)) = 0

< p(max{sd(z, Tiz,a), sd(y, Tjy, a), L[d(z, T}y, a) + d(Tiz,y, a)]}).
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Thus we check that (1) holds fori=0,5 = 0.
All the conditions of Theorem 3.2 are satisfied and {T;};en have a unique
common fized point (0,0).

Theorem 3.4. Let (X, d) be a complete by - metric space with a constant
s> 1 and a family of full self-mappings on X, written as {T;}52,. Let {m;}2,
be a family of non-negative integers. Suppose that there is a constant L < ﬁ
and a comparison function ¢ such that the inequality

holds for all z,y,a € X, i # j. Suppose that T5™ is an identity mapping.
Then {T;}2, have a unique common fized point.

Proof. Let S; = T;" for i € N. Then for all z,y,a € X and i # j we have

sd(z,y,a) < p(max{sd(S;z,z, a), sd(S;y, y,a), L[d(z, Sjy, a) + d(S;z,y, a)]})

(10)
Let o € X be an arbitrary point. We define a sequence {z,},en by the
recursive relation

Tpo1 = SpTp,n € N. (11)

We claim that
d(xp, Tpt1, Tnyo) = 0, for alln € N. (12)

From the quasi-contractive condition (10) there is

SAd(Tpy, Tntt, Tn) <@(max{sd(S, oTni2, Tni2, Tn), SA(Sni1Tni1, Tnits Tn),
Lld(wny2, Sny1Zni1, Tn) + d(SniaTnia, Tnyr, Tn)l})

e(max{sd(x, 11, Tnia, Tn), SA(Tp, Tpi1, Tn),

Lld(zpy2, Tny Tn) + d(Tpg1, Tnit, Tn)]})

[
90(3 (xn+17 Tn+2, xn))

Assume that d(z,41, Tpi2,2,) > 0. Since p(t) < t for all t > 0, then we have

Sd(xna Tnii, xn+2) S @(Sd(l‘nJrla Tni2, xn)) < Sd(xna Tnii, xn+2)-

which is a contradiction. Hence d(z,,, x,11, Tpi2) = 0.

Similarly, using the method of Lemma 3.1, we can get that {z,} is a Cauchy
sequence. Since (X, d) is a complete bp-metric space, then {x,} converges to
some x € X when n — oco. For any fixed n € N, we select a sufficiently large
number m € N with m > n.
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Now, from the contractive condition (11) and (10), there is
d(z, Sy, a) <sld(x,Spx, Xmi1) + d(Spa, a, Tpyr) + d(x, 0y Ty
=sd(SpT, Tmyi1, )
<p(max{sd(So(Spx), Spx,a), sd(Smi1Tm+1, Tmi1,a),
L{d(Spx, Sms1Zm1, @) + d(So(Snx), X1, a)]})
=p(max{sd(S,z, Spx,a), sd(xmy,, Tmi1,a),
Ld(Snz, Ty, a) + d(Spz, T, a)]})
=p(max{sd(xm, Tmi1,a), L[d(Syz, Tpm, a) + d(Syz, Tpmi1,a)]}).
Let m — +o00, we have z,, — x, thus d(z, S,z,a) < o(d(S,z, z,a)).
Suppose that d(S,z, x,a) > 0, then we have
d(z, Spr,a) < o(d(Syz,x,a)) < d(Syx, x,a)

. which is a contradiction. Therefore d(S,z,z,a) = 0. Hence z = S,z for all
n € N. Thus we have proved that z is the common fixed point of the {S;}3°,,.

Suppose that x and y are two different common fixed points of {S;}°,
from Definition 2.2(1), we know that there exist a« € X and a # u, v satisfy
d(x,y,a) > 0. Then there is

sd(x,y,a) <p(max{sd(Sp12, 2, a), sd(Sny, y, a),
L[d(l‘v Snya) + d(Sn—I—ll'a Y, a)]})
=p(max{sd(z, z,a), sd(y,y,a), L[d(z, y,a) + d(x,y, a)]})

<(5d(z,y.a) + d(z, )

=p(d(z,y,a)).
It follows that sd(z,y,a) < ¢(d(x,y,a)) < d(x,y,a) which is a contradiction.
Thus {5;}:°, have only a unique common fixed point in X.
Since x = S,z = T}z for all n € N, there is
Thr =T, x) =T (T,x) = S,(T,x).
Thus T,x is a fixed point of S,, for all n € N. Then for every fixed n and
i€ N(i #n), a € X, we have
sd(Tyx, Si(Thx), a) <p(max{sd(T,x, S,(T,x),a), sd(S;(T,z), So(S;(T,x)),a),
Ld(Tyz, So(Si(Tn)), a) + d(Sn(Tox), Si(Thx), a)]) })
=p(max{sd(T,z, T x,a), sd(S;(T,x), S;(T,x),a),
Lld(T,x, S;(Tyx),a) + d(Tyx, Si(T,x),a)]})

<<,0(%[ (T,x, Si(Tyhx),a) + d(Tyx, Si(T,x), a)])
=p(d(Tyz, Si(Thz), a))
<d(T,x,S;(T,x),a).
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which is a contradiction. Thus S;(T,,xz) = T,,x for all i € N. Therefore, for all
n € N, T,z is a fixed point of {5;}:2,. Since {S;}°, have a unique common
fixed point, therefore T,z = x for all n € N.

Suppose that = and z are two different common fixed points of {T;}°,. From
Definition 2.2(1), we know that there exist a € X and a # x,z satisfy
d(z,z,a) > 0. Thus

sd(z, z,a) <gp(max{sd(T,1z, z,a), sd(s,z, z, a),
Lid(z,T,z,a) + d(Th112, z,a)]})
p(max{sd(z,z,a),sd(z, z,a), L[d(z, z,a) + d(z, z,a)]})

(
<p(3[dlr, 2,0) + d(z, 2,a))
=p(d(z, 2, a)).
It follows that sd(z,z,a) < ¢(d(z,2,a)) < d(x, z,a) which is a contradiction.
Thus {7;}:2, have only a unique common fixed point in X. O

ACKNOWLEDGEMENTS. This project is supported by NSFC (NO.11101161
and NO.11261062) and Research Fund for the Doctoral Program of Higher Ed-
ucation of China (NO.20114407120011, NO.20134407110001).

Linan Zhong* is corresponding author, email: zhonglinan2000@126.com.

References

[1] Banach, S.: Sur les opérations dans les ensembles abstraits et leur appli-
cation aux équations intégrales. Fund Math. 3, 1922(131-181).

[2] Caristi, J.: Fixed point theorems for mapping satisfying inwardness con-
ditions. T. Am. Math. Soc. 215, 1976(241-251).

[3] Hicks, T. L.: Fixed point theorems for quasi-metric spaces. J. Math. Soc.
Jpn. 33, 1988(231-236).

[4] Shatanawi, W., Pitea, A.: Fixed and coupled fixed point theorems of

omega-distance for nonlinear contraction. Fixed Point Theory Appl. Ar-
ticle ID 2013(275).

[5] Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. USA. 28, 1942(535-
537).

[6] Cosentino, M., Salimi, P., Vetro, P.: Fixed point on metric-type spaces.
Acta. Math. Sci. 125, 2002(245-252).



426

[7]

[10]

[11]

[12]

[14]

[15]

[16]

Wang and Zhong

Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27,
1988(385-389).

Gregori, V., Sapena, A.: On fixed point theorems in fuzzy metric spaces.
Fuzzy Sets Syst. 125, 2002(245-252).

Lonescu, C., Rezapour, S., Samei, M.: Fixed points of some new contrac-
tions on intuitionistic fuzzy metric sapaces. Fixed Point Theory Appl.
Article ID 2013(168).

Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform.
Univ. Ostrav. 1, 1993(5-11).

Czerwik, S.: Nonlinear set-valued contraction mappings in b-metric
spaces. Atti Semin. Mat. Fis. Univ. Modena. 46, 1998(263-276).

Gahler, V. S.: 2-metrische Raume und ihre topologische Struktur. Math.
Nachr. 26, 1963(115-118).

Dung, N. V., Le Hang, V. T.: Fixed point theorems for weak C-
contractions in partiallyordered 2-metric spaces. Fixed Point Theory
Appl. Article ID (2013)161.

Aliouche, A., Simpson, C.: Fixed points and lines in 2-metric spaces. Adv.
Math. 229, 2012(668-690).

Mustafa, Z., Parvaneh, V., Roshan, J. R., Kadelburg, Z.: by-Metric spaces
and some fixed point theorems. Fixed Point Theory Appl. Article ID
2014(144).

Shatanawi, W., Pitea, A., Lazovicé, R.: Contraction conditions using
comparison functions on b-metric spaces. Fixed Point Theory Appl. Arti-
cle ID 2014(135).

Received: June, 2016



	1 Introduction
	2 Preliminary Notes
	3 Main Results

