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Abstract

In this paper we show the existence of common fixed points of self-

mappings defined on the b2-metric spaces. This is done by using the

contractive condition and quasi-contractive condition defined via a com-

parison function.
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1 Introduction

Over the last fifty years, the fixed point theory has been proved to be a very
powerful and important tool for the study on the nonlinear phenomena.

After the contractive principle was proved by Bnanch[1] in 1922, there
appeared many other works on the fixed theory under different contractive
conditions on spaces such as: quasi-metric spaces[2, 3], G-metric spaces[4],
Menger spaces[5], metric-type spaces[6] and fuzzy metric spaces[7, 8, 9]. It
has becomed one of the research activity centers to study the fixed points of
the mappings which satisfy certain contractive or quasi-contractive condition.
The follows are some concise statements about it.

The notion of a b-metric space was first introduced by Czerwik in [10, 11]
and then many fixed point results were obtained for single or multi-valued
mappings by Czerwik and many other authors. On the other hand, the no-
tion of 2-metric space was introduced by Gähler in[12], having the area of a
triangle in R

2 as an inspirative example. Similarly, several fixed point results
were also obtained for mappings defined on these kind of spaces[13, 14]. Later,
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Zead Mustafa[15] introduced a new type of generalized metric spaces, called b2-
metric spaces, as a generalization of both 2-metric and b-metric spaces. Some
fixed point theorems were then raised under various contractive conditions in
partially ordered b2-metric spaces. Among these conditions there are condi-
tions using comparison functions and almost generalized weakly contractive
conditions.

The purpose of this paper is to consider the common fixed points of a family
of self-mappings on the b2-metric spaces. The method is to use the contractive
or quasi-contractive condition defined by means of a comparison function.

2 Preliminary Notes

Before stating our main results, we introduce some necessary definitions as
follows.

Definition 2.1. [10, 11] Let X be a non-empty set and s ≥ 1 be a given real
number. A function d : X ×X → R

+ is a b-metric on X if for all x, y, z ∈ X,
the following conditions hold:
(1). d(x, y) = 0 if and only if x = y.
(2). d(x, y) = d(y, x).
(3). d(x, z) ≤ s[d(x, y) + d(y, z)].
In this case, the pair (X, d) is called a b-metric space.

Definition 2.2. [12] Let X be a non-empty set and let d : X×X×X → R

be a map satisfying the following conditions:
(1). For every pair of distinct points x, y ∈ X, there exists a point z ∈ X such
that d(x, y, z) 6= 0.
(2). If at least two of three points x, y, z are the same, then d(x, y, z) = 0.
(3). The symmetry: d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) =
d(z, y, x) for all x, y, z ∈ X.
(4). The rectangle inequality: d(x, y, z) ≤ d(x, y, a) + d(y, z, a) + d(z, x, a) for
all x, y, z, a ∈ X.
Then d is called a 2-metric on X and (X, d) is called a 2-metric space.

Definition 2.3. [15] Let X be a non-empty set, s ≥ 1 be a real number and
let d: X ×X ×X → R be a map satisfying the following conditions:
(1). For every pair of distinct points x, y ∈ X, there exists a point z ∈ X such
that d(x, y, z) 6= 0.
(2). If at least two of three points x, y, z are the same, then d(x, y, z) = 0.
(3). The symmetry: d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) =
d(z, y, x) for all x, y, z ∈ X.
(4). The rectangle inequality: d(x, y, z) ≤ s[d(x, y, a) + d(y, z, a) + d(z, x, a)]
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for all x, y, z, a ∈ X.
Then d is called a b2-metric on X and (X, d) is called a b2-metric space with
parameter s. Obviously, for s = 1, b2-metric reduces to 2-metric.

Definition 2.4. [15] Let {xn} be a sequence in a b2-metric space (X, d).
(1). A sequence {xn} is said to be b2-convergent to x ∈ X, written as limn→∞ xn =
x, if for all a ∈ X, limn→∞ d(xn, x, a) = 0.
(2). {xn} is Cauchy sequence if and only if d(xn, xm, a) → 0, when n,m → ∞.
(3). (X, d) is said to be b2-complete if every b2-Cauchy sequence is a b2-
convergent sequence.

Definition 2.5. [15] Let (X, d) and (X ′, d′) be two b2-metric spaces and left
f :X → X ′ be a mapping.Then f is said to be b2-continuous at a point z ∈ X

if for a given ε > 0, there exists δ > 0 such that x ∈ X and d(z, x, a) < δ for
all a ∈ X imply that d′(fz, fx.a) < ε. The mapping f is b2-continuous on X

if it is b2-continuous at all z ∈ X.

Definition 2.6. [15] Let (X, d) and (X ′, d′) be two b2-metric spaces. Then
a mapping f : X → X ′ is b2-continuous at a point x ∈ X if and only if it is
b2-sequentially continuous at x; that is , whenever {xn}is b2-convergent to x,
{fxn}is b2-convergent to f(x).

Definition 2.7. [16] Let s ≥ 1 be a constant. A mapping ϕ: [0,+∞) →
[0,+∞) is called comparison function with base s ≥ 1, if the following two
axioms are fulfilled:
(a) ϕ is non-decreasing,
(b) limn→+∞ ϕn(t) = 0 for all t > 0.
Clearly, if ϕ is a comparison function, then ϕ(t) < t for each t > 0.

3 Main Results

These are the main results of the paper.

Lemma 3.1. Let (X, d) be a b2-metric space with a constant s > 1 exist
a sequence {xn}. Suppose that there is a constant L < 1

1+s
and a comparison

function ϕ such that the inequality

sd(Tix, Tjy, a) ≤ ϕ(max{sd(x, Tix, a), sd(y, Tjy, a), L[d(x, Tjy, a)+d(Tix, y, a)]})
(1)

holds for each x, y, a ∈ X and n ∈ N. Then {xn} is Cauchy sequence.

Proof. For a given point x0 ∈ X , we inductively define a sequence {xn} by

xn+1 = Tn+1xn, n ∈ N. (2)
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We claim that

d(xn, xn+1, xn+2) = 0, for all n ∈ N. (3)

From the contraction condition (1), there is

sd(xn, xn+1, xn+2) =sd(Tn+1xn, Tn+2xn+1, xn)

≤ϕ(max{sd(xn, Tn+1xn, xn), sd(xn+1, Tn+2xn+1, xn),

L[d(xn, Tn+2xn+1, xn) + d(Tn+1xn, xn+1, xn)]})

=ϕ(sd(xn+2, xn+1, xn)).

Suppose that d(xn+1, xn+2, xn) > 0. Since ϕ(t) < t for all t > 0, then we
have

sd(xn, xn+1, xn+2) ≤ ϕ(sd(xn+2, xn+1, xn) < sd(xn+2, xn+1, xn).

This is a contradiction. Therefore d(xn, xn+1, xn+2) = 0.
We claim that

sd(xn, xn+1, a) ≤ ϕ(sd(xn−1, xn, a)), for all a ∈ X, n ∈ N. (4)

First we have

sd(xn+1, xn, a) =sd(Tn+1xn, Tnxn−1, a)

≤ϕ(max{sd(xn, Tn+1xn, a), sd(xn−1, Tnxn−1, a),

L[d(xn, Tnxn−1, a) + d(Tn+1xn, xn−1, a)]})

=ϕ(max{sd(xn+1, xn, a), sd(xn−1, xn, a),

Ld(xn+1, xn−1, a)}).

Using the triangle inequality and L < 1

2
, we get

sd(xn+1, xn, a) ≤ϕ(max{sd(xn, xn+1, a), sd(xn−1, xn, a),

Ls[d(xn+1, xn−1, xn) + d(xn−1, xn, a) + d(xn+1, xn, a)]})

<ϕ(max{sd(xn, xn+1, a), sd(xn−1, xn, a),
s

2
[d(xn+1, xn, a) + d(xn−1, xn, a)]})

=ϕ(max{sd(xn, xn+1, a), sd(xn−1, xn, a)}).

Suppose that max{sd(xn, xn+1, a), sd(xn−1, xn, a)} = sd(xn, xn+1, a). Then ac-
cording to the property(a) of ϕ in Definition 1.7, there is

sd(xn+1, xn, a) < ϕ(sd(xn, xn+1, a)) < sd(xn, xn+1, a).
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which is a contradiction. Thus by the above inequality we have

sd(xn+1, xn, a) ≤ ϕ(sd(xn−1, xn, a)).

Hence the inequality (4) holds for all n ∈ N.
From (4), it is easy to inductively show that

sd(xn+1, xn, a) ≤ ϕn(sd(x0, x1, a)), for all a ∈ X, n ∈ N. (5)

Since limn→∞ ϕn(t) = 0 for all t > 0, from (5) it follows

lim
n→∞

d(xn+1, xn, a) = 0, for all a ∈ X. (6)

Now we go on to show that {xn} is a Cauchy sequence.
Let ε > 0. Since L < 1

1+s
implies s− 2L > 0 and 1− L(1 + s) > 0, by (6) we

can easily deduce that there exists n0 ∈ N such that

d(xn−1, xn, a) <
1− L− Ls

2s
ε < ε, for all n ≥ n0, a ∈ X. (7)

Let m,n ∈ N with m > n. We claim that

d(xn, xm, a) < ε, for allm > n ≥ n0, a ∈ X. (8)

This is done by induction on m.
Let n ≥ n0 and m = n + 1. Then from (4) and (7) we get

d(xn, xm, a) = d(xn, xn+1, a) < d(xn−1, xn, a) <
1− L− Ls

2s
ε < ε.

Thus (8) holds for m = n + 1.
Assume now that (8) holds for some m ≥ n + 1. We will show that (8) holds
for m+ 1.
From the contractive condition (1) and (2) there is

sd(xn, xm+1, a) =sd(Tnxn−1, Tm+1xm, a)

≤ϕ(max{sd(xn−1, Tnxn−1, a), sd(xm, Tm+1xm, a),

L[d(xn−1, Tm+1xm, a) + d(Tnxn−1, xm, a)]})

=ϕ(max{sd(xn−1, xn, a), sd(xm, xm+1, a),

L[d(xn−1, xm+1, a) + d(xn, xm, a)]})

=ϕ(max{sd(xn−1, xn, a), L[d(xn−1, xm+1, a) + d(xn, xm, a)]}).

By (4) and ϕ(t) < t for all t > 0, then we get

sd(xn, xm+1, a) < max{sd(xn−1, xn, a), L[d(xn−1, xm+1, a)+d(xn, xm, a)]}. (9)
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If from (9) we have sd(xn, xm+1, a) < sd(xn−1, xn, a), then by (7) there is

d(xn, xm+1, a) < d(xn−1, xn, a) <
1− L− Ls

2s
ε < ε.

If (9) implies sd(xn, xm+1, a) < L[d(xn−1, xm+1, a) + d(xn, xm, a)], then by the
triangle inequality, there is

sd(xn, xm+1, a) < L[sd(xn−1, xn, a)+sd(xn, xm+1, a)+sd(xn, xn−1, xm+1)+d(xn, xm, a)].

Now we turn to prove that d(xn, xn−1, xm+1) = 0.
From (3) we have d(xn, xn+1, xn+2) = 0 for all n ∈ N . Thus we can get

d(xn−1, xn, xn+2) ≤s[d(xn−1, xn, xn+1) + d(xn, xn+2, xn+1) + d(xn−1, xn+2, xn+1)]

=sd(xn−1, xn+1, xn+2)

≤sd(xn−1, xn, xn+1)

=0.

Similarly, we can get d(xn−1, xn, xm+1) = 0.
Thus sd(xn, xm+1, a) < L[sd(xn−1, xn, a) + sd(xn, xm+1, a) + d(xn, xm, a)].
Since L < 1

1+s
implies L

1−L
< 2L < 1 < s, we get

d(xn, xm+1, a) <
L

1− L
[d(xn−1, xn, a) +

1

s
d(xn, xm, a)]

<2L[d(xn−1, xn, a) +
1

s
d(xn, xm, a)].

Now by (7) and the inductive hypothesis (8), there is

d(xn, xm+1, a) <2L
1− L− Ls

2s
ε+

2L

s
ε

<
1− 2L− L(s− 1)

s
ε+

2L

s
ε

<
1− 2L

s
ε+

2L

s
εε.

Thus we have proved that (8) holds for m+ 1.
From (8) it follows that {xn} is a Cauchy sequence.

By Lemma 3.1, we get the following the fixed point theorem.

Theorem 3.2. Let (X, d) be a complete b2-metric space with a constant
s > 1 and a family of self-mappings on X, written as {Ti}i∈N. Suppose that
there is a sequence {xn} satisfy Lemma 3.1. Then {Ti}i∈N have a unique
common fixed point.
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Proof. By Lemma 3.1, we have {xn} is a Cauchy sequence. Since (X, d) is a
complete b2 - metric space, then {xn} converges to some u ∈ X when n → ∞.
For any fixed n ∈ N, we select sufficiently large m ∈ N with m > n.
Now from the contractive condition (1) and (2), we have

sd(u, Tnu, a) =sd(Tm+1xm, Tnu, a)

≤ϕ(max{sd(xm, Tm+1xm, a), sd(u, Tnu, a),

L[d(xm, Tnu, a) + d(Tm+1xm, u, a)]})

=ϕ(max{sd(xm, xm+1, a), sd(Tnu, u, a),

L[d(xm, Tnu, a) + d(xm+1, u, a)]}).

Let m → +∞, we have xm → u, thus sd(u, Tnu, a) ≤ ϕ(sd(Tnu, u, a)). If we
suppose that d(Tnu, u, a) > 0, then we have

sd(u, Tnu, a) ≤ ϕ(sd(Tnu, u, a)) < sd(Tnu, u, a).

which is a contradiction. Therefore there is d(Tnu, u, a) = 0 and hence u = Tnu.
Thus we have proved that u is the common fixed point of the {Ti}i∈N.
Now suppose that u and v are two different common fixed points of {Ti}i∈N,
from Definition 2.2(1), we have d(u, v, a) > 0 where a ∈ X and a 6= u, v. Then

sd(u, v, a) =sd(T1u, T2v, a)

≤ϕ(max{sd(u, T1u, a), sd(v, T2v, a), L[d(u, T2v, a) + d(T1u, v, a)]})

=ϕ(L[d(u, v, a) + d(u, v, a)])

<ϕ(sd(u, v, a)).

Thus we have sd(u, v, a) < ϕ(sd(u, v, a)) < sd(u, v, a) which is a contradiction.
So, we have proved that {Ti}i∈N have a unique common fixed point in X .

Example 3.3. Let X = {(α, 0) : α ∈ [0,+∞)} ∪ {(0, 2)} ⊂ R
2 , d(x, y, z)

denote the square of the area of triangle with vertices x, y, z ∈ X, e.g.,
d((α, 0), (β, 0), (0, 2)) = (α− β)2.

It is easy to check that d is a b2-metric with parameter s = 2. Consider the
mappings {Ti}i∈N : X → X given by

for all α ∈ [0,+∞), Ti(α, 0) =







(
α

4i
, 0), i 6= 0;

(0, 0), i = 0.

Ti(0, 2) = (0, 0), i ∈ N , and L = 1

4
< 1

1+s
, comparison function ϕ(t) = 3

4
t.

Finally, in order to check the contractive condition, only the case when
x = (α, 0), y = (β, 0), a = (0, 2) is nontrivial.
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Case1, ij 6= 0.

sd(Tix, Tjy, a) = 2d((
α

4i
, 0), (

β

4j
, 0), (0, 2))

= 2(
α

4i
−

β

4j
)2

≤ max{
α2

8
,
β2

8
}

< max{
27

32
α2,

27

32
β2}

≤
3

2
max{(α−

α

4i
)2, (β −

β

4j
)2}

=
3

4
max{2d((α, 0), (

α

4i
, 0), (0, 2)), 2d((β, 0), (

β

4j
, 0), (0, 2))}

= ϕ(max{sd(x, Tix, a), sd(y, Tjy, a)})

≤ ϕ(max{sd(x, Tix, a), sd(y, Tjy, a), L[d(x, Tjy, a) + d(Tix, y, a)]}).

Thus we check that (1) holds for ij 6= 0.
Case2, i = 0, j 6= 0.

sd(Tix, Tjy, a) = 2d((0, 0), (
β

4j
, 0), (0, 2))

= 2(0−
β

4j
)2

≤
β2

8

<
27

32
β2 =

3

2
(β −

β

4j
)2

≤
3

2
max{(α− 0)2, (β −

β

4j
)2}

=
3

4
max{2d((α, 0), (0, 0), (0, 2)), 2d((β, 0), (

β

4j
, 0), (0, 2))}

= ϕ(max{sd(x, Tix, a), sd(y, Tjy, a)})

≤ ϕ(max{sd(x, Tix, a), sd(y, Tjy, a), L[d(x, Tjy, a) + d(Tix, y, a)]}).

Thus we check that (1) holds for i = 0, j 6= 0.
Case3, i 6= 0, j = 0. The proof of (1) in this case is similar to one given in
Case2.
Case4, i = 0, j = 0.

sd(Tix, Tjy, a) = 2d((0, 0), (0, 0), (0, 2)) = 0

≤ ϕ(max{sd(x, Tix, a), sd(y, Tjy, a), L[d(x, Tjy, a) + d(Tix, y, a)]}).
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Thus we check that (1) holds for i = 0, j = 0.

All the conditions of Theorem 3.2 are satisfied and {Ti}i∈N have a unique
common fixed point (0, 0).

Theorem 3.4. Let (X, d) be a complete b2 - metric space with a constant
s > 1 and a family of full self-mappings on X, written as {Ti}

∞

i=0. Let {mi}
∞

i=0

be a family of non-negative integers. Suppose that there is a constant L < 1

1+s

and a comparison function ϕ such that the inequality

sd(x, y, a) ≤ ϕ(max{sd(Tmi

i x, x, a), sd(T
mj

j y, y, a), L[d(x, T
mj

j y, a)+d(Tmi

i x, y, a)]})

holds for all x, y, a ∈ X, i 6= j. Suppose that Tm0

0 is an identity mapping.
Then {Ti}

∞

i=0 have a unique common fixed point.

Proof. Let Si = Ti
mi for i ∈ N. Then for all x, y, a ∈ X and i 6= j we have

sd(x, y, a) ≤ ϕ(max{sd(Six, x, a), sd(Sjy, y, a), L[d(x, Sjy, a) + d(Six, y, a)]})
(10)

Let x0 ∈ X be an arbitrary point. We define a sequence {xn}n∈N by the
recursive relation

xn−1 = Snxn, n ∈ N. (11)

We claim that

d(xn, xn+1, xn+2) = 0, for all n ∈ N. (12)

From the quasi-contractive condition (10) there is

sd(xn+2, xn+1, xn) ≤ϕ(max{sd(Sn+2xn+2, xn+2, xn), sd(Sn+1xn+1, xn+1, xn),

L[d(xn+2, Sn+1xn+1, xn) + d(Sn+2xn+2, xn+1, xn)]})

=ϕ(max{sd(xn+1, xn+2, xn), sd(xn, xn+1, xn),

L[d(xn+2, xn, xn) + d(xn+1, xn+1, xn)]})

=ϕ(sd(xn+1, xn+2, xn)).

Assume that d(xn+1, xn+2, xn) > 0. Since ϕ(t) < t for all t > 0, then we have

sd(xn, xn+1, xn+2) ≤ ϕ(sd(xn+1, xn+2, xn)) < sd(xn, xn+1, xn+2).

which is a contradiction. Hence d(xn, xn+1, xn+2) = 0.
Similarly, using the method of Lemma 3.1, we can get that {xn} is a Cauchy
sequence. Since (X, d) is a complete b2-metric space, then {xn} converges to
some x ∈ X when n → ∞. For any fixed n ∈ N, we select a sufficiently large
number m ∈ N with m > n.
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Now, from the contractive condition (11) and (10), there is

d(x, Snx, a) ≤s[d(x, Snx, xm+1) + d(Snx, a, xm+1) + d(x, a, xm+1)]

=sd(Snx, xm+1, a)

≤ϕ(max{sd(S0(Snx), Snx, a), sd(Sm+1xm+1, xm+1, a),

L[d(Snx, Sm+1xm+1, a) + d(S0(Snx), xm+1, a)]})

=ϕ(max{sd(Snx, Snx, a), sd(xm, xm+1, a),

L[d(Snx, xm, a) + d(Snx, xm+1, a)]})

=ϕ(max{sd(xm, xm+1, a), L[d(Snx, xm, a) + d(Snx, xm+1, a)]}).

Let m → +∞, we have xm → x, thus d(x, Snx, a) ≤ ϕ(d(Snx, x, a)).
Suppose that d(Snx, x, a) > 0, then we have

d(x, Snx, a) ≤ ϕ(d(Snx, x, a)) < d(Snx, x, a)

. which is a contradiction. Therefore d(Snx, x, a) = 0. Hence x = Snx for all
n ∈ N. Thus we have proved that x is the common fixed point of the {Si}

∞

i=0.
Suppose that x and y are two different common fixed points of {Si}

∞

i=0,
from Definition 2.2(1), we know that there exist a ∈ X and a 6= u, v satisfy
d(x, y, a) > 0. Then there is

sd(x, y, a) ≤ϕ(max{sd(Sn+1x, x, a), sd(Sny, y, a),

L[d(x, Snya) + d(Sn+1x, y, a)]})

=ϕ(max{sd(x, x, a), sd(y, y, a), L[d(x, y, a) + d(x, y, a)]})

<ϕ(
1

2
[d(x, y, a) + d(x, y, a)])

=ϕ(d(x, y, a)).

It follows that sd(x, y, a) < ϕ(d(x, y, a)) < d(x, y, a) which is a contradiction.
Thus {Si}

∞

i=0 have only a unique common fixed point in X .
Since x = Snx = Tmn

n x for all n ∈ N , there is

Tnx = Tn(T
mn

n x) = Tmn

n (Tnx) = Sn(Tnx).

Thus Tnx is a fixed point of Sn for all n ∈ N. Then for every fixed n and
i ∈ N(i 6= n), a ∈ X , we have

sd(Tnx, Si(Tnx), a) ≤ϕ(max{sd(Tnx, Sn(Tnx), a), sd(Si(Tnx), S0(Si(Tnx)), a),

L[d(Tnx, S0(Si(Tnx)), a) + d(Sn(Tnx), Si(Tnx), a)])})

=ϕ(max{sd(Tnx, Tnx, a), sd(Si(Tnx), Si(Tnx), a),

L[d(Tnx, Si(Tnx), a) + d(Tnx, Si(Tnx), a)]})

<ϕ(
1

2
[d(Tnx, Si(Tnx), a) + d(Tnx, Si(Tnx), a)])

=ϕ(d(Tnx, Si(Tnx), a))

<d(Tnx, Si(Tnx), a).
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which is a contradiction. Thus Si(Tnx) = Tnx for all i ∈ N. Therefore, for all
n ∈ N, Tnx is a fixed point of {Si}

∞

i=0. Since {Si}
∞

i=0 have a unique common
fixed point, therefore Tnx = x for all n ∈ N.
Suppose that x and z are two different common fixed points of {Ti}

∞

i=0. From
Definition 2.2(1), we know that there exist a ∈ X and a 6= x, z satisfy
d(x, z, a) > 0. Thus

sd(x, z, a) ≤ϕ(max{sd(Tn+1x, z, a), sd(snz, z, a),

L[d(x, Tnz, a) + d(Tn+1x, z, a)]})

=ϕ(max{sd(x, x, a), sd(z, z, a), L[d(x, z, a) + d(x, z, a)]})

<ϕ(
1

2
[d(x, z, a) + d(x, z, a)])

=ϕ(d(x, z, a)).

It follows that sd(x, z, a) < ϕ(d(x, z, a)) < d(x, z, a) which is a contradiction.
Thus {Ti}

∞

i=0 have only a unique common fixed point in X .
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