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Abstract

Two-dimensional Born scattering for the non-relativistic case is con-
sidered, the purpose being to investigate electron transport properties
in mono-layer Graphene subject to an applied parallel electric field. So-
lutions for the Probability Density Current (PDC) are obtained in the
Fresnel zone which provides a model for simulating the PDC subject to
membrane crumpling. In this context a Random Fractal Defect Model
is considered which is used to assess the effect of (Fractal) crumpling on
the PDC.
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1 Introduction

Modelling electron transport is important in understanding the properties of
conductors and semi-conductors. In most cases, three-dimensional models
are considered in keeping with the dimensional properties of the majority of
crystalline structures. However, since the discovery of mono-layer Graphene
in 2004 [1], a two-dimensional crystalline material, two-dimensional electron
transport models have become important in attempting to determine the prop-
erties of this material, [2] and [3].

Graphene is a single layer of carbon atoms arranged into a two-dimensional
hexagonal-based honeycomb lattice and can be considered as a basic building
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block for graphitic materials of other dimensions. It is currently the only
known one-atom-thick crystalline form of matter, but, on a theoretical basis
at least, two-dimensional graphite has been studied since the late 1940s and is
widely used for describing properties of various carbon-based materials.

An interesting property of Graphene is that the charge carriers are relativis-
tic. Even though they are not actually travelling at relativistic speeds, their
structural interaction causes them to act like two-dimensional Dirac Fermions
with zero rest mass at the Dirac points on the six comers of the hexagon
although this pseudo-relativistic description is restricted to the chiral limit.
Thus, the charge carriers in Graphene have a unique property in that they
mimic relativistic particles as described by the Dirac equation rather than
the Schrödinger equation [4], [5]. The relativistic-like description of electron
waves on honeycomb lattices has been considered on a theoretical basis for
many years and is now being applied in an attempt to understand the elec-
tronic properties of Graphene since the experimental discovery of the material,
e.g. [6], [7], [8] and [9].

Graphene is the strongest and most conductive room temperature ma-
terial known and is a semi-metal (a zero-gap semi-conductor) with a wide
range of potential applications including ballistic transistors, nano-ribbons,
ultra-sensitive molecular sensing, super capacitance and Spintronics. Electron
transport measurements show that Graphene has a remarkably high electron
mobility at room temperature, with reported experimental values in excess of
200, 000 cm2V−1s−1 at electron densities of 2× 1011cm2 [10].

While the theoretical ‘relativistic properties’ of Graphene remains to be
fully correlated with experimental evidence, the non-relativistic properties of
the material remain a subject of research in terms of (non-relativistic) incident
electrons scattering from a two-dimensional electrostatic lattice potential. This
potential derives from the de-localised electrons associated with the hexagonal
nature of the primary structure of Graphene as replicated throughout the
lattice. In this sense, each primary element of Graphene is analogous to the
structure of Benzene from which the concept of de-localised electrons was first
derived. The de-localised electrons represent a repulsive electrostatic potential
with respect to incident electrons propagating through the material through
the application of an electric field and it is in this context that the results
reported in this paper are derived.

In this paper, the two-dimensional properties of non-relativistic scattered
wave functions are considered from which a quasi-one-dimensional model is
derived under the Born approximation. By evaluating the PDC it is shown
that when a uniform Electric Field Ex is applied, ballistic electron transport
occurs when Ex >> 1. The paper also introduces a Random Scaling Frac-
tal based defect model for the material and provides example simulations of
the two-dimensional PDC. The systematic analysis of non-realistic electron
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scattering within the Born approximation coupled with the Random Fractal
Defect Model and the results derived thereof are considered to be the principal
original components associated with the material reported herein.

2 Electron Transport Model

Using natural units where the Dirac constant ~ = 1 and the mass of an electron
m = 1, for a real two-dimensional potential r ∈ R2 7→ V (r), the non-relativistic
probability complex amplitude r ∈ R2 7→ Ψ(r, t) for an electron is given by
the (two-dimensional) Schrödinger equation

i
∂

∂t
Ψ(r, t) = −1

2
∇2Ψ(r, t) + V (r)Ψ(r, t) (1)

Since

−i ∂
∂t

Ψ∗(r, t) = −1

2
∇2Ψ∗(r, t) + V (r)Ψ∗(r, t)

we can construct the equation

∂

∂t
| Ψ(r, t) |2= i

2
∇ · [Ψ(r, t)∇Ψ∗(r, t)−Ψ∗(r, t)∇Ψ(r, t)]

where it is noted that the term V (r) | Ψ(r, t) |2 is cancelled. The PDC or
Particle Flux is then defines as

j =
i

2
[Ψ(r, t)∇Ψ∗(r, t)−Ψ∗(r, t)∇Ψ(r, t)]

by analogy with the continuity equation

∂

∂t
ρ(r, t) +∇ · j(r, t) = 0

for Particle Flux j and Particle Density ρ.
For r = x̂x + ŷy, we assume the presence of a uniform electric field Ex

which is applied over a region of compact support x ∈ [−1, 1] and is uniform
over y ∈ [−1, 1], the area of the mono-layer Graphene sheet being taken to be
4. The potential is then given by V (r) := V (x, y)− xEx (where the charge of
an electron is taken to be 1) [11].

A principal theme of the model developed in this paper is the evaluation of
a relationship between the electric field Ex and the Particle Flux n̂ · j where n̂
is a unit vector pointing in the direction of the current flow. In respect of this,
we consider the time-independent wave function ψ(r, ω) = Ψ(r, t) exp(−iωt),
where ω =

√
2E for electron energy E, and, from equation (1), the correspond-

ing time-independent equation is

(∇2 + k2)ψ(r, ω) = V (r)ψ(r, ω) (2)
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where k2 = 2ω, V (r) := 2V (r) and the PDC becomes

j =
i

2
[ψ(r, ω)∇ψ∗(r, ω)− ψ∗(r, ω)∇ψ(r, ω)] (3)

In the context of equations (2) and (3), the problem is to establish a relation-
ship between E and n̂·j given a model for V (r) and a solution for ψ(r, ω). This
requires a solution for ψ(r) given V (r) which can then be used to compute j
via equation (3).

3 Fundamental Solution

The fundamental solution to equation (2) is given by the Green’s function
transformation [12]

ψ(r, ω) = ψi(r, ω) + ψs(r, ω) where ψs(r, ω) = g(r, k)⊗r V (r)ψ(r, ω) (4)

and ψi is the incident wave-field which is the solution of (∇2+k2)ψi(r, ω) = 0,
g(r, ω) is the free space Green’s function which is the solution of

(∇2 + k2)g(r, ω) = −δ2(r), r ≡| r |

and ⊗r denotes the (two-dimensional) convolution integral over r ∈ R2. We
note that [12]

g(r, ω) =
exp(iπ/4) exp(ikr)√

8πkr
, kr >> 1 (5)

3.1 Point Scattering Analysis

For a single point scattering potential model when V (r) = δ2(r), ψs(r, ω) =
g(r, ω) and | ψs(r, ω) |2= 1/8πkr = 1/8πr

√
2ω. Given that | ψs |2 is a measure

of the differential scattering cross section, it is clear that as the energy of
an electron increases the cross-section decreases according to a 1/

√
ω scaling

law. This is significant only in the sense of the single point scattering model
considered although the scaling law holds for an assemble of N randomised
point scatterers when

V (r) =
N∑
j=1

δ2(r− rj)

given that

| ψs(r, ω) |2=
1

8π
√
2ω

∣∣∣∣∣
N∑
j=1

exp(ik | r− rj |)√
| r− rj |

∣∣∣∣∣
2
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=
1

8π
√
2ω

N∑
j=1

exp(ik | r− rj |)√
| r− rj |

N∑
`=1

exp(−ik | r− r` |)√
| r− r` |

=
1

8π
√
2ω

(
N

N∑
j=1

1

| r− rj |
+

N∑
j=1,j 6=`

exp(ik | r− rj |)√
| r− rj |

N∑
`=1

exp(−ik | r− r` |)√
| r− r` |

)

=
N

8π
√
2ω

N∑
j=1

1

| r− rj |
, N → ∞

Note that 1/
√
ω scaling is not exhibited in three-dimensions where the (point)

scattering cross-section is energy independent, the Green’s function being given
by exp(ikr)/4πr. Also note that the time dependence of the two-dimensional
(point) scattering cross section scales as 1/

√
t given that

1

2π

∞∫
−∞

exp(iωt)

(iω)q
dω =

1

2πi

i∞∫
−i∞

exp(st)

sq
ds =

1

Γ(q)t1−q
; t > 0, q > 0

This scaling law is the same as that associated with a one-dimensional classical
diffusion processes. The scattering amplitude | ψs | scales according to the
power law 1/ω1/4 with a time dependent characteristic determined by 1/t3/4.

If we define the transmission coefficient in terms of the ratio of the scat-
tering amplitude to the incident amplitude, then the electrical conductance
associated with a ‘quantum conductor’ due to the scattering properties of the
conductor may be defined in terms of a measure of this transmission coefficient
(analogous to the Landauer definition of the quantum conductivity). On this
basis, taking the incident wave-field to be a unit plane wave, the (quantum)
conductance associated with a two-dimensional Schrod̈inger (point) scattering
process is determined by a 1/t3/4 scaling law. Consequently, it is clear that in
regard to the time evolution associated with a point scattering processes (at
least for t → 0), the (quantum) conductivity of a two-dimensional scatterer
is significantly greater than that of a three dimensional equivalent (which is
independent of time).

The correlation between the electron energy scaling of the scattering ampli-
tude and the dimension of the scattering process is quantified in the following:

Theorem 3.1
For r ∈ Rn, n = 1, 2, 3, the point-scattering amplitude scales according to
1/ω(3−n)/4.

Proof of Thereom 3.1
The out-going Green’s functions are given by equation (5) for n = 2 and by
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[12]

g(r, ω) =
exp(ikr)

4πr
, n = 3 and g(x, ω) = i

exp(ikx)

2k
, n = 1

Application of point scattering analysis for each case yields (for N → ∞):

n = 1 : | ψs(x, ω) |2=
N

8ω

and

n = 3 : | ψs(r, ω) |2=
N

16π2

N∑
j=1

1

| r− rj |2

Thus, given that

n = 2 : | ψs(r, ω) |2=
N

8π
√
2ω

N∑
j=1

1

| r− rj |
, N → ∞

it is clear that we can construct the following scaling relationship for the scat-
tering amplitude:

| ψs(r, ω) |∝
1

ω(3−n)/4
, n = 1, 2, 3

3.2 Scattering Amplitude in the Fresnel Zone

Application of an asymptotic solution to equation (4) is not appropriate for the
determination of the scattering amplitude generated by the lattice of mono-
layer Graphene. For this reason, we consider an ‘intermediate field’ solution
under the Fresnel approximation with the aim of generating a convolution
integral based model for the scattering amplitude.

In the Fresnel zone, the Green’s function given by equation (5) can be
approximated thus (for a δ-source function located at s where s ≡| s |):

g(r, s, ω) =
exp(iπ/4) exp(iks)√

8πks
exp(−ikn̂ · r) exp(iαr2), n̂ =

s

s

where

α =
k

2s
=

1

s

√
ω

2

which is based on relaxing the condition r/s << 1 and ignoring all terms with
higher order powers greater than 2 in the binomial expansion of | r − s |.
Noting that

ik

2s
| s− r |2= ik

2s
(s2 + r2 − 2s · r) = iks

2
+
ikr2

2s
− ikn̂ · r
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we can then write equation (4) in the form

ψs(r, ω) =
exp(iπ/4) exp(iks/2)√

8
√
2πs

As(r, ω)

where

As(r, ω) =
1

ω1/4
exp(iαr2)⊗r V (r)ψ(r, ω) (6)

is the (Fresnel zone) scattering amplitude. Equation (6) expresses the scatter-
ing amplitude in terms of the convolution of the function V (r)ψ(r, ω) with a
‘Fresnel Kernel’.

3.3 Born Field Analysis

Under the Born approximation, equation (6) reduces to the form

As(r, ω) =
1

ω1/4
exp(iαr2)⊗r V (r)ψi(r, ω)

where we assume a simple unit plane wave model for the incident field of the
form ψi(r, ω) = exp(ik · r). For a crystalline lattice consisting of a regularly
spaced replica structure such as in a monolayer Graphene lattice, V (r) =
V (r + R), where R is a constant two-dimensional vector taken to describe
the distance in the plane between each scattering potential V (r). It is trivial
to show that in this case,

As(r, ω) =
exp(−ik ·R)

ω1/4
exp(iαr2)⊗r V (r) exp(ik · r)

which is a manifestation of Bloch’s Theorem under the Born approximation,
[13] and [14].

Let the plane wave be taken to propagate along the direction of the electric
field Ex. Then, k = x̂k and

As(x, y, ω) =
exp(−ikRx)

ω1/4
exp[iα(x2 + y2)]⊗x ⊗yV (x, y) exp(ikx)

−exp(−ikRx)

ω1/4
E(y, ω) exp(iαx2)⊗x x exp(ikx)

where

E(y, ω) = Ex exp(iαy2)⊗y H(y) ≡ Ex

1∫
−1

exp[iα(y′ − y)2]dy′ (7)
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and ⊗x and ⊗y denote the convolution integrals over x and y, respectively.
From equation (3), differentiation with respect to the Fresnel Kernel, for the
scattered field gives

∇As(x, y, ω) = 2iα(x̂x+ŷy)
exp(−ikRx)

ω1/4
exp[iα(x2+y2)]⊗x⊗yV (x, y) exp(ikx)

−2iαx̂x
exp(−ikRx)

ω1/4
E(y, ω) exp(iαx2)⊗x x exp(ikx)

−ŷ
exp(−ikRx)

ω1/4

[
∂

∂y
E(y, ω)

]
exp(iαx2)⊗x x exp(ikx)

from which it follows that

jx(x, y, ω) ≡ x̂ · j(x, y, ω) = 2αx | As(x, y, ω) |2

This result demonstrates that the PDC is scale invariant with regard to the
electron energy. This is a consequence of the scaling by 1/ω1/4 associated with
the Green’s function for r ∈ R2 whereas for r ∈ R3, and, using the same
analysis, the PDC is proportional to

√
ω.

Introducing the functions

φ(x, y, ω) =
exp(−ikRx)

ω1/4
exp[iα(x2 + y2)]⊗x ⊗yV (x, y) exp(ikx)

and

χ(x, ω) =
exp(−ikRx)

ω1/4
exp(iαx2)⊗x x exp(ikx)

the PDC jx is related to the modified electric field E - equation (7) - via the
quadratic equation

jx(x, y, ω) = 2αx[| E(y, ω) |2| χ(x, ω) |2 −E∗(y, ω)φ(x, y, ω)χ∗(x, ω)

−E(y, ω)φ∗(x, y, ω)χ(x, ω)+ | φ(x, y, ω) |2] (8)

We now focus on an analysis of the first term in equation (8) which is
dominant in the case when Ex >> 1 and consider the y-integrated PDC defined
by

Jx(x, ω) = 2αxEy(ω) | χ(x, ω) |2 (9)

where

Jx(x, ω) =
1

2

1∫
−1

jx(x, y, ω)dy and Ey(ω) =
1

2

1∫
−1

| E(y, ω) |2 dy

In this case, the PDC is proportional to E2
x and becomes independent of the

scattering processes that takes place within the lattice of the material due to
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scattering potential V (x, y). The electrons can therefore be taken to flow unim-
peded, without being slowed down by collisions as they are in a conventional
transistor, for example. The condition Ex >> 1 is therefore a qualification for
ballistic behaviour under the Born approximation.

Figure 1 shows examples of the PDC defined by equation (9) for a range
of values of ω using a 1000 element array with α =

√
ω/2; ranges that avoid

aliasing particularly with regard to the computation of the Fresnel Kernel
exp(iαx2), the convolution operation being evaluated using the MATLAB conv
function (with option ‘same’). From Figure 1, it is clear that the PDC increases
in amplitude as ω decreases.

Figure 1: Comparison of the function Jx(x, ω) for ω = 100 (Blue), ω = 500
(Red) and ω = 1000 (Green). The plots are normalised with regard to the
maximum absolute value for the case when ω = 100.

4 Fractal Defected Graphene

A freely suspended Graphene membrane is partially crumpled [15]. This is
because two-dimensional crystals in a three-dimensional space can not be flat
due to bending instabilities and thermally induced perturbations. According to
the Mermin-Wagner Theorem (which states that ‘in one- and two-dimensions,
continuous symmetries cannot be spontaneously broken at finite tempera-
ture in systems with sufficiently short-range interactions’ ([16], [17] and [18]),
long-wavelength fluctuations destroy the long-range order of two-dimensional
crystals. Thus, two-dimensional membranes embedded in a three-dimensional
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space have a tendency to be crumpled. Consequently the spatial characteris-
tics of Graphene include intrinsic defects (warping, crumpling and rippling) as,
under harmonic approximation theory, a membrane cannot be flat although
anharmonic coupling (bending-stretching) may also be present [19].

Graphene ripples have various sizes, have a broad distribution and power-
law correlation functions of normals together with some typical scale lengths
due to te intrinsic tendency of carbon to be bonded. Consequently, there
have been a variety of attempts to model the Graphene defects and the defect
dynamics of the material, [20], [21] and [22]. Moreover, the deformation of
Graphene effects the electron transport properties of the material [23] and it
is therefore important to incorporate this phenomenon in a model for electron
transport [24]. In this paper, we consider a Random Fractal surface model for
the defect potential as given by the solution to the Fraction Poison Equation
[24]

∇γW (r) = N(r), r ∈ R2, γ = 4−D, D ∈ [2, 3] (10)

where N(r) is a stochastic field with an arbitrary Probability Density Function
but a Uniform Power Spectral Density Function andD is the Fractal Dimension
of a surface. We consider a generic perturbation of the form V (r) := V (r+R)+
W (r). This expression for V (r) takes into account both scalar (electrostatic)
potential and the potential created by defects (Fractal Defects) in the material,
the solution of equation (10) being givn by (ignoring scaling) [24]

W (r) =
1

r2−γ
⊗r N(r)

The basis for equation (10) comes from an analysis of the evolution equation

W (r, t+ τ) = W (r, t)⊗r P (r) +N(r, t)

where W is the Density Function and P is the Probability Density Function
(PDF) that is a characteristic of the system statistics in which the evolution of
the Density Function occurs. For a Lévy PDF with a Characteristic Function
exp(−a | k |γ), γ ∈ (0, 2] where a is a constant and γ is the Lévy index,
application of the Taylor series for τ << 1 and the convolution theorem yields
the result

τ
∂

∂t
W̃ (k, t) = a | k |γ W̃ (k.t) + Ñ(k, t), a << 1

where, for any function F , F̃ denotes the (two-dimensional) Fourier transform.
Application of the Reisz definition for a Fractional Laplacian then yield the
result

τ
∂

∂t
W (r, t) = −a∇γW (r.t) +N(r, t)

so that for τ → 0 (ignoring scaling by a), equation (10) is obtained with
γ ∈ [1, 2] given that D ∈ [2, 3]. Equation (10) can thus be taken to be a
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Fractal surface representation of a Graphene sheet at a fixed point in time t,
and, for this case, the PDC becomes

jx(x, y, ω) = x | As(x, y, ω) |2

where

As(x, y, ω) = exp[iα(x2 + y2)]⊗x ⊗y[exp(−ikRx)V (x, y) +W (x, y)] exp(ikx)

− exp(−ikRx)E(y, ω) exp(iαx2)⊗x x exp(ikx)

We consider a ‘Mexican Hat’ function of the form (for constant σ)

V (x, y) = (x2 + y2) exp[−σ(x2 + y2)]

to represent the electrostatic potential associated with the delocalised elec-
trons. Figure 2 shows an example of the effect of Random Fractal Defects
on the PDC which changes the periodicity of the PDC in the positive half-
space (for a 1002 array). In this simulation the one- and two-dimensional
convolutions are implemented using the MATLAB conv and conv2 functions,
respectively (with the option ‘same’), the computation of the Graphene Defect
Function W (x, y) being undertaken using a Fourier transform with the MAT-
LAB function FFT2, Gaussian Random Number Generator randn and noting
that (ignoring scaling)

1

r2−γ
⊗r N(r) ↔ Ñ(k)

| k |4−D

5 Conclusions

The purpose of this paper has been to investigate non-relativistic electron
transport in a two-dimensional regular lattice such as Graphene subject to
a applied parallel electric field. In particular, the PDC has been evaluated
under the Born approximation in the Fresnel zone. For the case when the
electric field is large, scattering effects become less significant and the mate-
rial behaves as a ballistic conductor. The Fractal defect model considered in
Section 4 reveals that the presence of (Fractal) defects has a relatively weak
effect on the amplitude but a pronounced effect on the periodicity of the PDC,
at least according to the model developed. The ‘key’ to understanding the
electron transport properties of a two-dimensional material such as Graphene
is that (non-relativistic) electrons ‘propagate’ according to an Energy−1/4 scal-
ing law as discussed in Section 3.1. This is not a feature of three-dimensional
electron transport which is (point scattering) energy invariant. Consequently,
the dimensionality of mono-layer materials implies high conductivity, low en-
ergy electrons yielding a larger differential scattering cross-section (within the
context of the point scattering analysis given in Section 3.1).
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Figure 2: Comparison of normalised two-dimensional PDC for ω = 103, σ = 5,
D = 2.5, Rx = 1 with ‖W (x, y)‖ = 0 (Left) and ‖W (x, y)‖/‖V (x, y)‖ = 1
(Right).
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