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Abstract

Based on the TAH scheme, we construct the generalized (2+1)-
dimensional S-mKdv hierarchy and the generalized (2+1)-dimensional
Levi hierarchy, and we also generate their Hamiltonian structures. At
last, we also obtain the Darboux transformations of the generalized
(2+1)-dimensional Levi hierarchy.
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1 Introduction

Based on Lax pairs, a large number of (1+1)-dimensional integrable systems
have been obtained [1-3]. Tu Guizhang et al.[4] presented a new method for
generating (2+1)-dimensional hierarchies of evolution equations, which was
called TAH scheme. The main idea of TAH scheme as follows [4].

Let A be an associative algebra over the field K = R or C. We intro-
duce a residue operator on an associative algebra A[ξ] which consists of all

pseudodifferential operators
N
∑

i=−∞

aiξ
i, where ξ stands for an operator defined

by

ξf = fξ + (∂yf), f ∈ A. (1)

By repeatedly applying the above formula, that will get

ξnf =
∑

i≥0

(

n
i

)

(∂if)ξn−i, n ∈ Z, (2)
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where Z is the set of integers, and

(

n
i

)

= n(n−1)···(n−i+1)
i!

, i ≥ 0, n ∈ Z.

Then, fix a matrix operator U = U(λ + ξ, u) ∈ A[ξ] which depends
on a parameter λ and a vector function u = (u1, · · · , up)

T . Solving the
equation Vx = [U, V ], where V =

∑

Vnλ
−n. By solving the recursion re-

lation among g(n) = (g
(n)
1 , · · · , g(n)p ), where g

(n)
i comes from the expansion

〈V, ∂U
∂ui

〉 =
∑

n g
(n)
i λ−n, where 〈a, b〉 = tr(R(ab)), a, b ∈ A[ξ].

Next, we try to find an operator J and form the hierarchy utn = Jg(n). At
last, by using the trace identity δ

δUi

〈V, Uλ〉 = λ−γ ∂
∂λ
λγ〈V, ∂U

∂ui

〉, i = 1, 2, · · · , p,
the Hamiltonian structure of the above equation will be obtained.

Searching for Darboux transformations of soliton equations becomes more
and more meaningful. There are some ways for generating Darboux transfor-
mations of soliton equations by starting from isospectral problems [5,6].

2 The generalized (2+1)-dimensional S-mKdv

hierarchy and its Hamiltonian structure

We consider the isospectral problems






















ϕx = Uϕ, U =

(

λ+ ξ q + r
q − r −(λ + ξ)

)

,

ϕt = V ϕ, V =

(

A B
C D

)

=
∑

m≥0

(

Am Bm

Cm Dm

)

λ−m.

(3)

Solving the stationary matrix Vx = [U, V ] gives rise to



















































Anx = Any + (q + r)Cn − Bn(q − r),
Bnx = 2Bn+1 + 2Bnξ +Bny + (q + r)Dn − An(q + r),
Cnx = −2Cn+1 − 2Cnξ − Cny + (q − r)An −Dn(q − r),
Dnx = −Dny + (q − r)Bn − Cn(q + r),
B0 = (q + r)ξ−1, C0 = (q − r)ξ−1,
∂−A0 = (q + r)(q − r)yξ

−2 +O(ξ−3),
∂+D0 = (q − r)(q + r)yξ

−2 +O(ξ−3).

(4)

By using (1), (2) and from (4), we can get

A1 = −
1

2
(q + r)(q − r)ξ−1, D1 =

1

2
(q + r)(q − r)ξ−1,

B1 =
1

2
{[(q + r)x − (q + r)y − (q + r)2(q − r)]ξ−1 − 2(q + r) +O(ξ−2)},

C1 =
1

2
{[−(q − r)x − (q − r)y − (q − r)2(q + r)]ξ−1 − 2(q − r) +O(ξ−2)}.
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Based on (3) and the TAH scheme, we are easy to have the following (2+1)-
dimensional hierarchy of evolution equations

utn =

(

q
r

)

tn

=

(

2R(Bn+1)
−2R(Cn+1)

)

= J1

(

R(Bn+1 + Cn+1)
R(−Bn+1 + Cn+1)

)

, (5)

where J1 =

(

1 −1
−1 −1

)

.

When n = 1, the hierarchy (5) can be written as

ut1 =

(

q
r

)

t1

=

(

2R(B2)
−2R(C2)

)

=

(

1
2
∂−[(q + r)x − (q + r)y − (q + r)2(q − r)]

−1
2
∂+[

1
2
(q − r)x + (q − r)y + (q − r)2(q + r)]

)

.

This is the generalized (2+1)-dimensional Schrödinger equation.
Next, we need to consider the spectral matrices U, V in (3). Therefore, we

have

< V,
∂U

∂q
>= R(B + C), < V,

∂U

∂r
>= R(−B +C), < V,

∂U

∂λ
>= R(A−D).

Substituting the above results into the trace identity, we have
(

R(Bn + Cn)
R(−Bn + Cn)

)

=
δ

δu
(
Dn+1 − An+1

n
) =

δH(1)
n

δu
, H(1)

n =
Dn+1 − An+1

n
.

So the above S-mKdv hierarchy (5) has the following Hamiltonian form

utn = J1

(

R(Bn+1 + Cn+1)
R(−Bn+1 + Cn+1)

)

= J1
δH

(1)
n+1

δu
.

3 The generalized (2+1)-dimensional Levi hi-

erarchy and Dardoux transformations

3.1 The generalized (2+1)-dimensional Levi hierarchy

We consider the following Lax matrices

U =

(

0 −q
−1 (λ+ ξ)− r

)

, V =

(

A B
C D

)

=
∑

m≥0

(

Am Bm

Cm Dm

)

λ−m. (6)

Substituting the above matrices U and V into the equation Vx = [U, V ],
we find that







































Anx = Bn − qCn,
Bnx = −Bn+1 −Bnξ − qDn + Anq +Bnr,
Cnx = Cn+1 + ξCn −An − rCn +Dn,
Dnx = Dny − Bn − rDn +Dnr + Cnq,
B0 = C0 = 0, A0 = ξ−1, D0 = 0, B1 = ξ−1q,
C1 = ξ−1, A1 = −∂−1qyξ

−2 +O(ξ−3), D1 = 0.

(7)
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Note V
(n)
+ =

∑n
m=0(Ame1(0)+Dme2(0)+Bme3(0)+Cme4(0))λ

n−m = λnV −

V
(n)
− , we have by tedious computation that −V

(n)
+x + [U, V (n)] = Bn+1e3(0) −

Cn+1e4(0).

Set V (n) = V
(n)
+ − Cn+1e2(0), one infers that

−V
(n)
+x + [U, V (n)] = Cn+1,xe2(0) + (Cn+1q −Bn+1)e3(0).

So we have the generalized (2+1)-dimensional Levi hierarchy

utn =

(

q
r

)

tn

=

(

−R(Dn+1,x)
−R(Cn+1,x)

)

= J2

(

−R(Cn+1)
−R(Dn+1)

)

, (8)

where J2 =

(

0 ∂
∂ 0

)

.

Next, we need to consider the spectral matrices U, V in (6). Therefore, we
have

< V,
∂U

∂q
>= R(−C), < V,

∂U

∂r
>= R(−D), < V,

∂U

∂λ
>= R(D).

Substituting the above results into the trace identity, we are easy to get
(

R(−Cn)
R(−Dn)

)

= −
δ

δu
(
Dn+1

n
) =

δH(2)
n

δu
, H(2)

n = −
Dn+1

n
.

The above Levi hierarchy (8) can be written as the Hamiltonian form

utn = J2

(

−R(Cn+1)
−R(Dn+1)

)

= J2
δH

(2)
n+1

δu
.

3.2 The Dardoux transformations of (9)

Let n = 2, the hierarchy (8) reduces to a new equation as follows
{

qt2 = −∂x∂
−1
− (−qxx + 2qxy + 2qxr + 2qrx + 2qry − 2qyr − 2∂−1qyq),

rt2 = −(rx + ry + r2 − 2q)x,
(9)

whose Lax pair matrices present that










ϕx = U1ϕ,
ϕy = U2ϕ,
ϕt = V ϕ,

(10)

where

U1 =

(

0 −q
−1 λ− r

)

, U2 =

(

0 0
0 λ

)

, V =

(

λ2 − q + ∂−1qy qλ− qx + qy + qr
λ+ r q

)

.
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Based on the spectral problem (10), we consider the Darboux transforma-
tion [7] ϕ′ = Tϕ, and require ϕ′ satisfying the spectral problem











ϕ′
x = U ′

1ϕ
′,

ϕ′
y = U ′

2ϕ
′,

ϕ′
t = V ′ϕ′,

(11)

where T is a 2 × 2 matrix, U ′
1, U

′
2, V

′ have the same forms as U1, U2, V
expect replacing q, r by q′, r′. It is easy to see that T meets Tx + TU1 =
U ′
1T, Ty + TU2 = U ′

2T, Tt + TV = V ′T .

Assume that φ = (φ1, φ2)
T and ψ = (ψ1, ψ2)

T are two fundamental solu-
tions of the spectral problem (10), so one defines the matrix [7,8]

T = T (λ) =

(

δ 0
0 δ−1

)(

A0 B0

−δ δ(λ+D0)

)

=

(

δA0 δB0

−1 λ+D0

)

,

where δB0 = −δA0
φ1

φ2

, D0 =
φ1

φ2

− λ1. When δA0 = 1, then δB0 = −φ1

φ2

.

Next, we set the matrix U ′
1 decided by (11) has the same form as U1, where

U ′
1 =

(

0 −q′

−1 λ− r′

)

, and wish to find the relations of the potentials q, r and

q′, r′.

So, we need to set T−1 = T ∗/detT,

(Tx + TU1)T
∗ =

(

f11(λ) f12(λ)
f21(λ) f22(λ)

)

. (12)

It is easy to see that f11(λ), f12(λ), f21(λ), f22(λ) are second-order polynomials
on λ. So (12) can be written as

Tx + TU1 = P (λ)T, (13)

where P (λ) =

(

0 p
(0)
12

−1 λ+ p
(0)
22

)

.

From (13), we have



























δxA0 + δA0x − δB0 = −p
(0)
12 ,

δxB0 + δB0x − δA0q + δB0λ− δB0r = (λ+D0)p
(0)
12 ,

−λ−D0 = −δA0 − λ− p
(0)
22 ,

D0x + q + (λ+D0)(λ− r) = −δB0 + (λ+D0)(λ+ p
(0)
22 ).

(14)

Comparing the coefficients of λj(j = 0, 1) in (14), we have the following
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relations


















































p
(0)
12 = δB0 = −q′,

p
(0)
22 = −r = −r′,
δxA0 + δA0x = 0, choose δA0 = 1,
(δB0)x − q − δB0r = δB0D0,
r +D0 = 1,
D0x + q = −δB0,
D0 = −δB0.

(15)

Next we set the matrix V ′ decided by (11) has the same form as V , where

V ′ =

(

λ2 − q′ + ∂−1q′y q′λ− q′x + q′y + q′r′

λ+ r′ q′

)

, and we wish to find the rela-

tions of the potentials q, r and q′, r′.
We note T−1 = T ∗/detT,

(Ty + TV )T ∗ =

(

g11(λ) g12(λ)
g21(λ) g22(λ)

)

. (16)

It is easy to see that g11(λ), g12(λ), g21(λ), g22(λ) are second-order polynomials
on λ. So (16) can be written as

Tt + TV = Q(λ)T, (17)

where Q(λ) =

(

λ2 + q
(0)
11 q

(1)
12 λ+ q

(0)
12

λ+ q
(0)
21 q

(0)
22

)

.

Solving (17), we have

(δA0)y + δA0λ
2 + δA0(−q + ∂−1qy) + δB0(λ+ r) = δA0λ

2 + δA0q
(0)
11 − q

(0)
12 λ− q

(0)
12 ,(18)

(δB0)y + δA0(qλ− qx + qy + qr) + δB0q = δB0(λ
2 + q

(0)
11 ) + (λ+D0)(q

(1)
12 λ+ q

(0)
12 ),(19)

−λ2 − (−q + ∂−1qy) + (λ+ r)(λ+D0) = δA0(λ+ q
(0)
21 )− q

(0)
22 , (20)

D0y − qλ− (−qx + qy + qr) + (λ+D0)q = δB0(λ+ q
(0)
21 ) + (λ+D0)q

(0)
22 . (21)

Comparing the coefficients of λj(j = 0, 1, 2) in (18-21), we have


























































q
(1)
12 = −δB0 = q′,
r +D0 = δA0,

q
(0)
22 = −δB0 = q′,

q
(0)
12 = δA0q + δB0D0,

q
(0)
11 = ∂−1qy + δB0,

q
(0)
21 = −∂−1qy + q +D0r − δB0 = r′,

−q
(0)
11 + q

(0)
12 = q

(0)
21 − q

(0)
22 .

(22)
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