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Abstract

We solve some forms of non homogeneous differential equations us-
ing a new function ug which is integral-closed form solution of a non
homogeneous second order ODE with linear coefficients. The non ho-
mogeneous part is an arbitrary function of L2(R). Using this function
ug as a base we give in closed integral form solutions of several two
degree DE.
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1 Introduction

We will solve the equation

(a1x+ b1)f
′′(x) + (a2x+ b2)f

′(x) + (a3x+ b3)f(x) = g(x) (1)

where f , g ∈ L2(R) and a1, a2, a3, b1, b2, b3 are constants in R.
We call the solution ug, and using this solution we try to solve other general
differential equations.
The solution of (1) (function ug), follow using the Fourier transform and its
properties. The result is a quite complicated integral. However the Fourier
transform of this integral is not so complicated and satisfies as we will see a
simple first order differential equation. We also consider and solve completely
a class of differential equations having two degree polynomial coefficients.
We also give examples and applications. Special cases of ug are known func-
tions, such as Hermite polynomials, Bessel functions, confluent hypergeometric
functions and other.
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2 Preliminary Notes

Let the Fourier Transform of a function f of L2(R) is

f̂(γ) =
∫ ∞

−∞
f(t)e−itγdx

the Inverse Fourier Transform is

f(x) =
1

2π

∫ ∞

−∞
f̂(γ)eiγxdγ

Then it is known (integration by parts)

∫ ∞

−∞
f(x)xne−ixγdx = in(f̂)(n)(γ). (2)

̂(f (n))(γ) = (iγ)nf̂(γ). (3)
∫ ∞

−∞
f ′(x)A(x)e−ixγdx =

=
∫ ∞

−∞
f(x)A′(x)e−ixγdx+ (−iγ)

∫ ∞

−∞
f(x)A(x)e−ixγdx. (4)

∫ ∞

−∞
f ′′(x)A(x)e−ixγ =

∫ ∞

−∞
f(x)A′′(x)e−ixγdx+

+2(−iγ)
∫ ∞

−∞
f(x)A′(x)e−ixγdx+ (−iγ)2

∫ ∞

−∞
f(x)A(x)e−ixγdx. (5)

(see [2]).

3 Main Results

These are the main results of the paper.

Theorem 3.1 When f , g ∈ L2(R) and lim|x|→∞ |f(x)x2+ǫ| = 0, ǫ > 0,
equation (1) can reduced to

(−ia1γ
2 + a2γ + ia3)

f̂(γ)

dγ
+ (−b1γ

2 − 2ia1γ + ib2γ + a2 + b3)f̂(γ) = ĝ(γ) (6)

which is solvable.

Proof.

Take the Fourier Transform in both sides of (1) and use relations (2),(3),(4),(5).
We immediately arrive to (6). But (6) is completely solvable DE of first degree.
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After solving it we use the inverse Fourier transform to get the solution, which
we call it

f(x) = ug [{a1, a2, a3} , {b1, b2, b3} ; x] . (7)

and satisfies (6).

Note. When g(x) = 0, the solution is very simple as someone can see is

û0 [{a1, a2, a3} , {b1, b2, b3} ; γ] =

= exp

(
−
∫ −b1γ

2 − 2ia1γ + ib2γ + a2 + b3
−ia1γ2 + a2γ + ia3

dγ

)
(8)

Theorem 3.2 The DE

(ax2 + bx+ c)y′′(x) + (kx2 + lx+m)y′(x) + (tx2 + rx+ s)y(x) = g(x) (9)

is solvable if

k =
a (4a∆− bl −∆l + 2am)

−b2 + 2ac− b∆
(10)

s = 6a− 2b2

c
+

2b∆

c
− l +

bm

c
− ∆m

c
+

br

2a
+

∆r

2a
− b2t

2a2
+

ct

a
− b∆t

2a2
(11)

and ∆ =
√
b2 − 4ac

The solution is

y(x) =
a1x+ b1

ax2 + bx+ c
ug[{a1, a2, a3} , {b1, b2, b3} ; x] (12)

where

a1 =
ab3 (b+∆)

(b+∆) k + 2a(2a− l + s)
(13)

a2 =
b3 (b+∆) k

(b+∆) k + 2a(2a− l + s)
(14)

a3 =
b3 (b+∆) t

(b+∆) k + 2a(2a− l + s)
(15)

b1 =
2ab3c

(b+∆) k + 2a(2a− l + s)
(16)

b2 = −b3 (b+∆) (4a2 + bk +∆k − 2al)

2a (4a2 + bk +∆k − 2al + 2as)
(17)
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Proof. We proceed as in Proposition 1.
Set

y(x) =
a1x+ b1

ax2 + bx+ c
Y (x) (18)

We arrive in a equation

(a1x+ b1)Y
′′(x) + (a2x+ b2)Y

′(x) + (a3x+ b3)Y (x) = g(x), (19)

in which the relation of the coefficients of the two equations (9) and (19) is:

b =
ab21 + a21c

a1b1
, k =

aa2
a1

, l = 2a+
ab2
a1

+
a2c

b1
, t =

aa3
a1

m =
2ab21 + a1b2c

a1b1
, r =

aa2b1 + ab1b3 + a1a3c

a1b1
, s =

ab1b2 + a1b3c

a1b1

Solving the above system we get the proof.
i) Theorem 2 prove that, a two degree ODE with second degree polynomial
coefficients is 6-th parameter solvable DE and admits a general solution y(x) =
ug(x) in a closed integral form. Thus if we give any values we want in (9) then
it is solvable always except for two values of the coefficients (here) k and s,
which are determined by the others.
ii) A way to find some special cases of solutions of the DE (9) is with the
command ’SolveAlways’ of the program Mathematica.

Example 1. The equation

(
x2 + 3x+ 1/3

)
y′′(x) +

(
x2 207− 25

√
69

2
+ 2x+ 3

)
y′(x)+

+y(x)

(
−x2

2
+ x+

−233 + 41
√
69

12

)
= 0 (20)

is equivalent to the second order, first degree polynomial coefficients ODE

−(95− 23
√
69 + (9 +

√
69)x)Y (x) + 2(2

√
69 + (69− 9

√
69)x)Y ′(x)+

+(2 + (9 +
√
69)x)Y ′′(x) = 0, (21)

which is solvable according to Theorem 1.

y(x) =
9(2 + (9 +

√
69)x)

(−95 + 23
√
69)(1 + 9x+ 3x2)

×

×u0

[{
6 +

√
69, 2(69− 9

√
69),−9−

√
69
}
,
{
2, 4

√
69,−95 + 23

√
69
}]

where u0 is given by (8).
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Theorem 3.3 The DE
[
ax2 +

ab1
a1

x

]
y′′(x)+

[
kx2 + (2a+ s)x+

2ab1
a1

]
y′(x)+

[
tx2 + rx+ s

]
y(x) = g(x),

(22)
with g ∈ L2(R), have a closed integral form solution

y(x) = ug

[{
a1,

a1k

a
,
a1t

a

}
,

{
b1,

a1s

a
,
−a1k + a1r

a

}
; x

]
(23)

Applications in the case of linear coefficients

1.

The homogeneous of the differential equation

2xy′′(x) + y′(x)− 2y(x) = g(x) (24)

is
2xy′′(x) + y′(x)− 2y(x) = 0 (25)

and have solutions

y1(x) = cosh(2
√
x) , y2(x) = sinh(2

√
x)

With our method (24) have solution

y(x) = ug[{2, 0, 0} , {1, 1,−2} ; x]

where

ŷ(w) =
e−i/w

w3/2

(
C1 +

∫ w

c

iei/xG(x)

2
√
x

dx

)

and G(x) = ĝ(x).
2.

The homogeneous of the differential equation

y′′(x)− 2xy′(x) + 2ny(x) = g(x) (26)

is
y′′(x)− 2xy′(x) + 2ny(x) = 0 (27)

and have solution

y1(x) = Hn(x), y2(x) = 1F1

[
−n

2
,
1

2
; x2

]
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With our method (26) have solution

y(x) = ug[{0,−2, 0} , {1, 0, 2n} ; x]

where

ŷ(w) = ei(1+n) arctan( 2
w
)w−1+n

(
4 + w2

)− 1
2
−n

2 [C1+

+
∫ w

c
ie−i(1+n) arctan( 2

x
)G(x)x−n(2i+ x)

(
4 + x2

) 1
2
(−1+n)

dx]

and G(x) = ĝ(x).
3.

The homogeneous of the differential equation

xy′′(x) + y(x) = g(x) (28)

is

xy′′(x) + y(x) = 0 (29)

and have solution

y(x) =
√
x
[
C1J1(2

√
x) + C2Y1(2

√
x)
]

With our method (28) have solution

y(x) = ug[{1, 0, 0} , {0, 0, 1} ; x]

where

ŷ(w) =
1

w2
e

i

w

(
C1 +

∫ w

c
ie−

i

xG(x) dx
)

and G(x) = ĝ(x).
Note.

In the above examples if we extract the general solutions and then set in the
equations G(x) = 0, we arrive to the reduced homogeneous solution.

Applications for the two degree polynomials coefficients

1.

The homogeneous of the differential equation

x2y′′(x) + [kx2 + x(2 + s)]y′(x) + (tx2 + rx+ s)y(x) = g(x) (30)

is

x2y′′(x) + [kx2 + x(2 + s)]y′(x) + (tx2 + rx+ s)y(x) = 0 (31)
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and have solution
y(x) =

=
C1

x
e−kx/2−

√
k2−4tx/2U

(
−2r + k(2 + s) + s

√
k2 − 4t

2
√
k2 − 4t

, s, x
√
k2 − 4t

)
+

+
C2

x
e−kx/2−

√
k2−4tx/2L

(
2r − k(2 + s)− s

√
k2 − 4t

2
√
k2 − 4t

,−1 + s, x
√
k2 − 4t

)

Where La
n(x) = L(n, a, x) is the generalized Laguerre polynomial and U(a, b, x)

is confluent hypergeometric function.
With our method (30) have solution

y(x) =
a1
x
ug[{a1, a1k, a1t} , {0, a1s,−a1k + a1r} ; x]

2.

The equation

x(1−x)y′′(x)+(kx2+lx−2−k−l)y′(x)+[tx2+(−s+2+2k+l−t)x+s]y(x) = g(x)

have solution

y(x) =
a1

1− x
×

×ug[{a1,−a1k,−a1t} , {0,−2a1 − a1k − a1l,−2a1 − a1k − a1l + a1s} ; x]

Example of the above equation we get if we choose b1 = 0, a2 = 0, b2 =
−2a1 − a1l, a3 = −a1t, b3 = −2a1 − a1l + a1s and k = 0, then

ŷ(w) = e−
i(2+l−s)

w w−4−l


C1 +

∫ w

c

ie
i(2+l−s)

x G(x)x2+l

a1
dx




or

y(x) =
a1

1− x
ug[{a1, a2, a3} , {b1, b2, b3} ; x]

is the solution of

(1− x)xy′′(x) + (lx− 2− l)y′(x) + [tx2 + (2 + l − t)x+ s]y(x) = g(x)

3.

The equation

x(1− x)y′′(x) + (kx2 + lx+m)y′(x) + (tx2 + rx+ s)y(x) = g(x) (32)

is solvable with the ug functions when k + l +m+ 2 = 0.
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