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Abstract
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1 Introduction

The study of slant submanifolds was initiated by B. Y. Chen [3]. Since then
many research articles have been appeared in this field, slant submanifolds are
the natural generalization of both holomorphic and totally real submanifolds.
A. Lotta [2] defined and studied these submanifolds in the setting of contact
manifolds. Later on, J. L. Caberizo et al. [6, 7] studied slant, semi-slant and
bi-slant submanifolds in contact geometry . In particular, totally umbilical
proper slant submanifolds of Kaehler manifolds has been studied in [5].

The idea of hemi-slant submanifolds was introduced by A. Carriazo as a
particular class of bi-slant submanifolds and he called them anti-slant subman-
ifold after that, V.A. Khan and M. A. Khan [10] named these submanifolds
Pseudo-slant submanifolds and studied them in the setting of Sasakian mani-
fold. Recently, these submanifolds studied by B. Sahin for their warped prod-
uct [6]. In this paper we will study hemi-slant submanifolds of Cosymplectic
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manifolds.

2 Preliminary Notes

A 2n + 1−dimensional C∞-manifold M̄ is called A 2n + 1 dimensional C∞

manifold M̄ is said to have an almost contact structure if there exist on M a
tensor field φ of type (1, 1), a vector field ξ and 1-form η satisfying.

φ2 = −I + η ⊗ ξ, φ(ξ) = 0, η ◦ φ = 0, η(ξ) = 1. (1)

There always exists a Riemannian metric g on an almost contact manifold M̄
satisfying following conditions

g(φX, φY ) = g(X, Y )− η(X)η(Y ), η(X) = g(X, ξ) (2)

where X, Y are vector fields on M̄.

An almost contact structure (φ, ξ, η) is said to be normal if the almost
complex structure J on the product manifold M̄ ×R given by

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
)

where f is the C∞−function on M̄ ×R. The condition for normality in terms
of φ, ξ and η is [φ, φ] + 2dη ⊗ ξ = 0 on M̄ , where [φ, φ] is the Nijenhuis tensor
of φ. Finally the fundamental 2-form Φ is defined by Φ(X, Y ) = g(X, φY ).

An almost contact metric structure (φ, ξ, η, g) is said to be cosymplec-
tic, if it is normal and both Φ and η are closed, and structure equation of
cosymplectic manifold is given by

(∇̄Xφ)Y = 0 (3)

for any X, Y ∈ TM̄ , where TM̄ is the tangent bundle of M̄ and ∇̄ denotes the
Riemannian connection of the metric g. Moreover for cosymplectic manifold

∇̄Xξ = 0. (4)

Let M be a submanifold of an almost contact metric manifold M̄ with
induced metric g and if ∇ and ∇⊥ are the induced connection on the tangent
bundle TM and the normal bundle T⊥M of M , respectively then Gauss and
Weingarten formulae are given by

∇̄XY = ∇XY + h(X, Y ) (5)
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∇̄XV = −AV X +∇⊥

XV (6)

for each X, Y ∈ TM and V ∈ T⊥M, where h and AN are the second funda-
mental form and the shape operator respectively for the immersion of M into
M̄ and they are related as

g(h(X, Y ), N) = g(ANX, Y ), (7)

where g denotes the Riemannian metric on M̄ as well as on M .

For any X ∈ TM, we write

φX = TX + FX, (8)

where TX is the tangential component and FX is the normal component of
φX.

Similarly, for any V ∈ T⊥M , we write

φV = tV + fV, (9)

where tV is the tangential component and fV is the normal component of φV.
The covariant derivatives of the tensor field T and F are defined as

(∇̄XT )Y = ∇XTY − T∇XY (10)

(∇̄XF )Y = ∇⊥

XFY − F∇XY (11)

From equations (3)(5), (6), (8) and (9) we have

(∇̄XT )Y = AFYX + th(X, Y ) (12)

(∇̄XF )Y = fh(X, Y )− h(X, TY ). (13)

The mean curvature vector H on M is given by

H =
1

n

n∑

i=1

h(ei, ej)

where n is the dimension of M and {e1, e2, ...en} is the local orthonormal frame
of vector fields on M.

A submanifoldM of Riemannian manifold M̄ is said to be totally umbilical
if

h(X, Y ) = g(X, Y )H (14)
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If h(X, Y ) = 0 for any X, Y ∈ TM then M is said to be totally geodesic. If
H = 0, then it is said to be minimal.

A submanifold M of an almost contact metric manifold M̄ is said to be
slant submanifold if for any x ∈ M and X ∈ TxM is constant. The constant
angle θ ∈ [0, π/2] is then called slant angle of M in M̄. If θ = 0 the submani-
fold is invariant submanifold, if θ = π/2 then it is anti-invariant submanifold
if θ 6= 0, π/2 then it is proper slant submanifold.

For slant submanifolds of contact manifolds J. L. Cabrerizo et al. [6]
proved the following Lemma

Lemma 2.1 Let M be a submanifold of an almost contact manifold M̄,
such that ξ ∈ TM then M is slant submanifold if and only if there exist a
constant λ ∈ [0, 1] such that

T 2 = λ(I − η ⊗ ξ). (15)

Thus, one has the following consequences of above formulae

g(TX, TY ) = cos2 θ[g(X, Y )− η(X)η(Y )]

g(FX, FY ) = sin2 θ[g(X, Y )− η(X)η(Y )]

Definition 2.2 A submanifoldM of M̄ is said to be hemi-slant submanifold
of an almost contact manifold M̄ if there exist two orthogonal complementary
distribution D1 and D2 on M such that

(i) TM = D1 ⊕D2 ⊕ 〈ξ〉.

(ii) The distribution D1 is anti-invariant i.e., φD1 ⊆ T⊥M.

(iii) The distribution D2 is slant with slant angle θ 6= π/2.

If µ is invariant subspace under φ of the normal bundle T⊥M , then in the case
of hemi-slant submanifold, the normal bundle T⊥M can be decomposed as

T⊥M = µ⊕ φD⊥ ⊕ FDθ.

The Riemannian curvature tensor is defined as

R̄(X, Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z (16)

The equation of Coddazi for totally umbilical hemi-slant submanifold M
is given by

R̄(X, Y, Z, V ) = g(Y, Z)g(∇⊥

XH, V )− g(X,Z)g(∇⊥

YH, V ) (17)
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where R̄(X, Y, Z, V ) = g(R̄(X, Y )Z, V ) and X, Y, Z are vector fields on M and
V ∈ T⊥M.

It is easy to see that Riemannian curvature tensor for Cosymplectic man-
ifold satisfies the following properties

(a) R̄(φX, φY )Z = R̄(X, Y )Z (b) φR̄(X, Y )Z = R̄(X, Y )φZ. (18)

By an extrinsic sphere we mean a submanifold of an arbitrary Riemannian
manifold which is totally umbilical and has a nonzero parallel mean curvature
vector [9].

3 Main Results

In this section, we will study a special class of hemi-slant submanifolds which
are totally umbilical. Throughout the section we consider M as a totally um-
bilical hemi-slant submanifold of a Cosymplectic manifold. Now we have the
following theorem

Theorem 3.1 Let M be a totally umbilical hemi-slant submanifold of a
Cosymplectic manifold M̄ such that the mean curvature vector H ∈ µ. Then
one of the following statement is true

(i) M is totally geodesic.

(ii) M is semi-invariant submanifold.

Proof. For V ∈ φD⊥ and X ∈ Dθ, we have

∇̄XφV = φ∇̄XV (19)

using equations (5),(6) and (15) the above equation becomes

∇XφV + g(X, φV )H = −φXg(X, V ) + φ∇⊥

XV.

Then by orthogonality of two distributions and the assumption H ∈ µ the
above equation takes the form

∇XφV = φ∇⊥

XV (20)

which implies that ∇⊥

XV ∈ φD⊥, for any V ∈ φD⊥. Also we have g(V,H) = 0,
for V ∈ FD⊥, then using this fact we derive

g(∇⊥

XV,H) = −g(V,∇⊥

XH) = 0. (21)
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The above equation implies

∇⊥

XH ∈ µ⊕ FDθ.

Now, for any X ∈ Dθ, we have

∇̄XφH = φ∇̄XH,

using equation (15), we obtain

AφHX +∇⊥

XφH = −φAHX + φ∇⊥

XH.

Now, using the assumption, that M is totally umbilical the above equation
takes the form

−Xg(H, φH) +∇⊥

XφH = −φXg(H,H) + φ∇⊥

XH,

using the equation (4) above equation takes the form

∇⊥

XφH = −TXg(H,H)− FXg(H,H) + φ∇⊥

XH,

taking Inner product with FX ∈ FDθ and using the equation (15)

g(∇XφH, FX) = − sin2 θ‖H‖2‖X‖2 + g(φ∇⊥

XH,FX).

Then from equation (15), the last term of right hand side is identically zero,
thus the above equation becomes

g(∇XφH, FX) + sin2 θ‖H‖2‖X‖2 = 0. (22)

Since equation (22) has a solution if either H 6= 0, then Dθ = {0} i.e., M is
totally real submanifold and if Dθ 6= {0} then M is totally geodesic submani-
fold or M is semi-invariant submanifold.

Now for any Z ∈ D⊥, by equation (12)

−T∇ZZ = AφZZ + th(Z,Z).

Taking Inner product with W ∈ D⊥ the above equation takes the form

−g(T∇ZZ,W ) = g(AFZZ,W ) + g(th(Z,Z),W ).

As M is totally umbilical hemi-slant submanifold, then above equation be-
comes

g(Z,W )g(H,FZ) + g(tH,W )‖Z‖2 = 0. (23)

The above equation has a solution if either H ∈ µ or dimD⊥ = 1.

If moreover, H /∈ µ then
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Theorem 3.2 Let M be a totally umbilical hemi-slant submanifold of a
Cosymplectic manifold M̄ such that dimension of slant distribution Dθ ≥ 4
and F is parallel, then M is either

(i) extrinsic sphere.

(ii) or anti-invariant submanifold.

Proof. Since dimension of slant distribution Dθ ≥ 4, then we can choose a set
of orthogonal vectors X, Y ∈ Dθ, such that g(X, Y ) = 0. Now from equation
(18)(b), we have

φR̄(X, Y )Z = R̄(X, Y )φZ

for any X, Y, Z ∈ Dθ. Replacing Z by TY , we obtain

φR̄(X, Y )TY = R̄(X, Y )φTY.

Using equations (8) and (1), the above equation takes the form

φR̄(X, Y )TY = − cos2 θR̄(X, Y )Y + R̄(X, Y )FTY. (24)

On the other hand, since F is parallel, then we have

R̄(X, Y )FTY = FR̄(X, Y )TY. (25)

Then by equations (24) and (25) we have

φR̄(X, Y )TY = − cos2 θR̄(X, Y )Y + FR̄(X, Y )TY. (26)

Taking Inner product in equation (26) by N ∈ T⊥M, we get

g(φR̄(X, Y )TY,N) = − cos2 θg(R̄(X, Y )Y,N) + g(FR̄(X, Y )TY,N),

using equation (8) the above equation reduced to

cos2 θg(R̄(X, Y, Y,N) = 0. (27)

Then, from equation (17), we derive

cos2 θg(Y, Y )g(∇⊥

XH,N)− g(X, Y )g(∇⊥

YH,N) = 0.

Since X and Y are orthogonal vectors, then the above equation gives

cos2 θg(∇⊥

XH,N)‖Y ‖2 = 0. (28)

The equation (28) has a solution either θ = π/2 i.e., M is anti-invariant or
∇⊥

XH = 0 ∀X ∈ Dθ. By similar calculation for any X ∈ D⊥⊕ < ξ > we can
obtain ∇⊥

XH = 0, hence ∇⊥

XH = 0 for all X ∈ TM i.e., the mean curvature
vector H is parallel to submanifold, i.e., M is extrinsic sphere.

Now we are in position to prove our main theorem
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Theorem 3.3 Let M be a totally umbilical hemi-slant submanifold of a
Cosymplectic manifold M̄ . Then M is either

(i) Totally geodesic,

(ii) or Semi-invariant,

(iii) or dim D⊥ = 1,

(iv) or Extrinsic sphere.

case (iv) holds if F is parallel and dim M ≥ 5(odd)

Proof. If H ∈ µ then by Theorem 3.1 M is either totally geodesic or semi-
invariant submanifolds which are case (i) and (ii). If H /∈ µ, then equation
(24) has a solution if dim D⊥ = 1 which is case (iii) and moreover if H /∈ µ and
F is parallel on M then by Theorem 3.2 M is extrinsic sphere which proves
the theorem completely.
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