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Abstract

In the present paper we have study totally umbilical hemi-slant sub-
manifolds of Cosymplectic manifolds via Riemannian curvature tensor
and finally obtained a classification for the Totally umbilical hemi-slant
submanifolds of Cosymplectic manifolds.
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1 Introduction

The study of slant submanifolds was initiated by B. Y. Chen [3]. Since then
many research articles have been appeared in this field, slant submanifolds are
the natural generalization of both holomorphic and totally real submanifolds.
A. Lotta [2] defined and studied these submanifolds in the setting of contact
manifolds. Later on, J. L. Caberizo et al. [6, 7] studied slant, semi-slant and
bi-slant submanifolds in contact geometry . In particular, totally umbilical
proper slant submanifolds of Kaehler manifolds has been studied in [5].

The idea of hemi-slant submanifolds was introduced by A. Carriazo as a
particular class of bi-slant submanifolds and he called them anti-slant subman-
ifold after that, V.A. Khan and M. A. Khan [10] named these submanifolds
Pseudo-slant submanifolds and studied them in the setting of Sasakian mani-
fold. Recently, these submanifolds studied by B. Sahin for their warped prod-
uct [6]. In this paper we will study hemi-slant submanifolds of Cosymplectic
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manifolds.

2 Preliminary Notes

A 2n + 1idimensional C*°-manifold M is called A 2n + 1 dimensional C'*
manifold M is said to have an almost contact structure if there exist on M a
tensor field ¢ of type (1,1), a vector field ¢ and 1-form 7 satisfying.

o' =—I1+1n®¢E ¢(&) =0, nop=0, n(§) =1 (1)

There always exists a Riemannian metric g on an almost contact manifold A
satisfying following conditions

90X, 9Y) = g(X,Y) —n(X)n(Y), n(X)=g(X,§) (2)

where X, Y are vector fields on M.

An almost contact structure (¢, &, n) is said to be normal if the almost
complex structure J on the product manifold M x R given by

JX £ 9= (6X — (X))

where f is the C°°—function on M x R. The condition for normality in terms
of ¢,& and 1 is [p, @] + 2dn ® £ = 0 on M, where [¢, ¢] is the Nijenhuis tensor
of ¢. Finally the fundamental 2-form ® is defined by ®(X,Y) = g(X, ¢Y).

An almost contact metric structure (¢, &, 7, g) is said to be cosymplec-
tic, if it is normal and both ® and 7 are closed, and structure equation of
cosymplectic manifold is given by

(Vxd)Y =0 (3)

for any X,Y € TM, where TM is the tangent bundle of M and V denotes the
Riemannian connection of the metric g. Moreover for cosymplectic manifold

Vxé=0. (4)

Let M be a submanifold of an almost contact metric manifold M with
induced metric g and if V and V+ are the induced connection on the tangent
bundle TM and the normal bundle T+M of M, respectively then Gauss and
Weingarten formulae are given by

ViV = VyY +h(X,Y) (5)
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VxV = —ApX + ViV (6)

for each X,Y € TM and V € T+M, where h and Ay are the second funda-
mental form and the shape operator respectively for the immersion of M into
M and they are related as

g(h(X,Y),N) = g(AnX,Y), (7)
where ¢ denotes the Riemannian metric on M as well as on M.
For any X € T'M, we write
pX =TX + FX, (8)

where T'X is the tangential component and F'X is the normal component of
0X.

Similarly, for any V € T+M, we write
OV =tV + fV, 9)

where tV is the tangential component and fV is the normal component of ¢V.
The covariant derivatives of the tensor field 7" and F are defined as

(VxT)Y =VxTY —TVxY (10)
(VxF)Y =V5FY — FVxY (11)
From equations (3)(5), (6), (8) and (9) we have
(VxT)Y = Apy X +th(X,Y) (12)
(VxF)Y = fh(X,Y) — h(X,TY). (13)
The mean curvature vector H on M is given by

H= l Z h(€i, ej)

ni4

where n is the dimension of M and {ey, e, ...€,, } is the local orthonormal frame
of vector fields on M.

A submanifold M of Riemannian manifold M is said to be totally umbilical
if
hX,Y) =g(X,Y)H (14)
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If h(X,Y) =0 for any X,Y € T'M then M is said to be totally geodesic. If
H =0, then it is said to be minimal.

A submanifold M of an almost contact metric manifold M is said to be
slant submanifold if for any x € M and X € T, M is constant. The constant
angle 6 € [0,7/2] is then called slant angle of M in M. If # = 0 the submani-
fold is invariant submanifold, if § = 7/2 then it is anti-invariant submanifold
if 6 # 0,7/2 then it is proper slant submanifold.

For slant submanifolds of contact manifolds J. L. Cabrerizo et al. [6]
proved the following Lemma

Lemma 2.1 Let M be a submanifold of an almost contact manifold M,
such that & € TM then M is slant submanifold if and only if there exist a
constant X € [0,1] such that

T2 = \I —n®E). (15)
Thus, one has the following consequences of above formulae
9(TX,TY) = cos*0[g(X,Y) — n(X)n(Y)]
g(FX,FY) = sin*0[g(X,Y) — n(X)n(Y)]

Definition 2.2 A submanifold M of M is said to be hemi-slant submanifold
of an almost contact manifold M if there exist two orthogonal complementary
distribution D1 and Dy on M such that

(1)) TM = Dy & Dy & (§).
(ii) The distribution Dy is anti-invariant i.e., Dy C T+ M.
(#ii) The distribution Dy is slant with slant angle 0 # /2.

If 11 is invariant subspace under ¢ of the normal bundle T+ M, then in the case
of hemi-slant submanifold, the normal bundle 7+ M can be decomposed as

TAM = p @ ¢D*+ @ FDy.
The Riemannian curvature tensor is defined as
R(X,Y)Z =VxVyZ —VyVxZ —Vixy|Z (16)

The equation of Coddazi for totally umbilical hemi-slant submanifold M
is given by

R(X,Y,Z,V) = g(Y.2)9(VxH,V) — g(X, Z)g(VyH,V) (17)
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where R(X,Y,Z,V) = g(R(X,Y)Z,V) and X, Y, Z are vector fields on M and
VeTHM.

It is easy to see that Riemannian curvature tensor for Cosymplectic man-
ifold satisfies the following properties

(a) R(6X,6Y)Z = R(X,Y)Z (b) ¢R(X,Y)Z = R(X,Y)oZ.  (18)

By an extrinsic sphere we mean a submanifold of an arbitrary Riemannian
manifold which is totally umbilical and has a nonzero parallel mean curvature
vector [9].

3 Main Results

In this section, we will study a special class of hemi-slant submanifolds which
are totally umbilical. Throughout the section we consider M as a totally um-
bilical hemi-slant submanifold of a Cosymplectic manifold. Now we have the
following theorem

Theorem 3.1 Let M be a totally umbilical hemi-slant submanifold of a
Cosymplectic manifold M such that the mean curvature vector H € u. Then
one of the following statement is true

(i) M is totally geodesic.

(ii) M is semi-invariant submanifold.

Proof. For V € ¢ D+ and X € Dy, we have
VxoV = ¢VxV (19)
using equations (5),(6) and (15) the above equation becomes
VxoV +g(X,6V)H = —6Xg(X,V) + ¢VxV.

Then by orthogonality of two distributions and the assumption H € pu the
above equation takes the form

VxoV = ¢VxV (20)

which implies that VxV € ¢D*, for any V € ¢D+. Also we have g(V, H) = 0,
for V € FD*, then using this fact we derive

g(VxV.H) = —g(V.VxH) = 0. (21)
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The above equation implies
VxH € u® FD,.
Now, for any X € Dy, we have
Vx¢H = ¢V xH,
using equation (15), we obtain
AguX + VyoH = —pApX + ¢V H.

Now, using the assumption, that M is totally umbilical the above equation
takes the form

~Xg(H,¢H) + VxpH = —pXg(H, H) + ¢V H,
using the equation (4) above equation takes the form
Vx¢H = —TXg(H,H) — FXg(H, H) + ¢VxH,
taking Inner product with FF'.X € F'Dy and using the equation (15)
9(VxoH, FX) = —sin®0||H|*|| X||* + g(¢Vx H, FX).

Then from equation (15), the last term of right hand side is identically zero,
thus the above equation becomes

9(VxoH, FX) + sin 0| H|*[| X ||* = 0. (22)

Since equation (22) has a solution if either H # 0, then Dy = {0} i.e., M is
totally real submanifold and if Dy # {0} then M is totally geodesic submani-
fold or M is semi-invariant submanifold.

Now for any Z € D+, by equation (12)
TN yZ = ApzZ +th(Z, Z).
Taking Inner product with W € D~ the above equation takes the form
—g(TNV2Z, W) = g(Apz Z, W) + g(th(Z,Z), W).

As M is totally umbilical hemi-slant submanifold, then above equation be-
comes

9(Z,W)g(H, FZ) + g(tH,W)|| Z||* = 0. (23)

The above equation has a solution if either H € y or dimD+ = 1.

If moreover, H ¢ ;1 then
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Theorem 3.2 Let M be a totally umbilical hemi-slant submanifold of a
Cosymplectic manifold M such that dimension of slant distribution Dy > 4
and F' is parallel, then M 1is either

(i) extrinsic sphere.
(ii) or anti-invariant submanifold.

Proof. Since dimension of slant distribution Dy > 4, then we can choose a set
of orthogonal vectors X,Y € Dy, such that ¢(X,Y) = 0. Now from equation
(18)(b), we have

OR(X,Y)Z = R(X,Y)oZ

for any X,Y, Z € Dy. Replacing Z by TY, we obtain
OR(X.Y)TY = R(X,Y)4TY.
Using equations (8) and (1), the above equation takes the form

PR(X,Y)TY = —cos’OR(X,Y)Y + R(X,Y)FTY. (24)
On the other hand, since F' is parallel, then we have
R(X,Y)FTY = FR(X,Y)TY. (25)
Then by equations (24) and (25) we have
PR(X,Y)TY = —cos’OR(X,Y)Y + FR(X,Y)TY. (26)

Taking Inner product in equation (26) by N € T+M, we get
g(pR(X,Y)TY,N) = —cos’>0g(R(X,Y)Y,N) + g(FR(X,Y)TY,N),

using equation (8) the above equation reduced to

cos’0g(R(X,Y,Y,N) = 0. (27)
Then, from equation (17), we derive

cos®0g(Y,Y)g(VxH,N) — g(X,Y)g(VyH, N) = 0.

Since X and Y are orthogonal vectors, then the above equation gives

cos?0g(VxH, N)||Y|* = 0. (28)

The equation (28) has a solution either § = 7/2 i.e., M is anti-invariant or
VixH = 0VX € Dy. By similar calculation for any X € Dt® < £ > we can
obtain V% H = 0, hence VyH = 0 for all X € TM i.e., the mean curvature
vector H is parallel to submanifold, i.e., M is extrinsic sphere.

Now we are in position to prove our main theorem
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Theorem 3.3 Let M be a totally umbilical hemi-slant submanifold of a
Cosymplectic manifold M. Then M is either

(i) Totally geodesic,

(i1) or Semi-invariant,

(iii) or dim D+ =1,

(iv) or Eztrinsic sphere.

case (1) holds if F' is parallel and dim M > 5(odd)

Proof. If H € p then by Theorem 3.1 M is either totally geodesic or semi-
invariant submanifolds which are case (i) and (ii). If H ¢ p, then equation
(24) has a solution if dim D+ = 1 which is case (iii) and moreover if H ¢ p and
F' is parallel on M then by Theorem 3.2 M is extrinsic sphere which proves
the theorem completely.
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