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Abstract

This paper studies three classes of 3-Lie algebras which are realized

by bilinear functions on vector spaces. The solvability, nilpotency and

metric structures of 3-Lie algebras are discussed. And structures of

inner derivation algebras and derivation algebras are investigated. The

results can be used in the realization of 3-Lie algebras.
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1 Introduction

3-Lie algebras [1] are very important ternary algebraic system since the wide
applications in many fields on mathematics, mathematical physics and string
theory (cf. [2, 3]). In the papers [4, 5], the 3-Lie algebras are realized by
Lie algebras, linear functions and cubic matrices. And in paper [6], three
classes of 3-Lie algebras (V, [, , ]f,λ) are constructed by bilinear functions f on
a vector spaces V . In this paper we study the solvability, nilpotency and metric
structures of the 3-Lie algebras (V, [, , ]f,λ), and their derivation algebras.
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In this paper we suppose that F is a field of characteristic zero. And the
multiplications of basis vectors which are not listed in the multiplication table
are assumed to be zero.

A 3-Lie algebra is a vector space L over a field F endowed with a 3-ary
multi-linear skew-symmetric operation [x1, x2, x3] satisfying the 3-Jacobi iden-
tity

[[x1, x2, x3], y2, y3] =
3

∑

i=1

[x1, · · · , [xi, y2, y3], · · · , x3], ∀x1, x2, x3 ∈ L. (1)

A derivation of a 3-Lie algebra L is a linear map D : L → L, such that for
any elements x1, x2, x3 of L

D([x1, x2, x3]) =
3

∑

i=1

[x1, · · · , D(xi), · · · , x3]. (2)

The set of all derivations of L is a subalgebra of Lie algebra gl(L). This
subalgebra is called the derivation algebra of A, and is denoted by Der(L). The
map ad(x1, x2) : L → L defined by ad(x1, x2)(x) = [x1, x2, x] for x1, x2, x ∈ L

is called a left multiplication. It follows from (2) that ad(x1, x2) is a derivation.
The set of all finite linear combinations of left multiplications is an ideal of
Der(L) and is denoted by ad(L). Every element in ad(L) is by definition an
inner derivation, and for ∀ x1, x2, y1, y2 of L,

[ad(x1, x2), ad(y1, y2)] = ad([x1, x2, y1], y2) + ad(y1, [x1, x2, y2]).

A metric on a 3-Lie algebra L is a non-degenerate symmetric bilinear form
B : L× L → F satisfying

B([x, y, z], u) +B(z, [x, y, u]) = 0, ∀x, y, z, u ∈ L. (3)

Lemma 1.1 [6] Let V be a linear space over a field F with dimV = n ≥ 6,
c be a fixed nonzero vector of V , f, g, h : V ⊗ V → F , λ : V ⊗ V ⊗ V −→ F .
Define the 3-ary multiplication on V as follows: for arbitrary x, y, z ∈ V ,

[x, y, z]f,λ = f(y, z)x+ g(z, x)y + h(x, y)z + λ(x, y, z)c. (4)

Then (V, [, , ]f,λ) is a 3-Lie algebra if and only if
(1) c ∈ Kerf, and f = g = h, f is a bilinear skew-symmetric form on V

satisfying f(x2, x3)x1 + f(x3, x1)x2 + f(x1, x2)x3 ∈ Kerf, ∀x1, x2, x3 ∈ V.

(2) λ is a ternary linear skew-symmetric function on V and for arbitrary
x1, x2, x3, y2, y3 ∈ V , λ satisfies

λ([x1, x2, x3]f+λc
, y2, y3)− λ(x1, x2, x3)(f + λc)(y2, y3)

= λ([x1, x2, x3]f , y2, y3)− λ([x1, y2, y3]f , x2, x3)− λ(x1, [x2, y2, y3]f , x3)
−λ(x1, x2, [x3, y2, y3]f ),

where λc(x, y) = λ(c, x, y), [x1, x2, x3]f and [x1, x2, x3]f+λc
are defined as

[x, y, z]f = f(y, z)x+ g(z, x)y + h(x, y)z.
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Lemma 1.2 [6] Let (V, [, , ]f,λ) be a 3-Lie algebra in Lemma 1.1 with a basis
{z1, · · · , zn}, n ≥ 6. If λ satisfies

= λ([x1, x2, x3]f , y2, y3)
= λ([x1, y2, y3]f , x2, x3) + λ(x1, [x2, y2, y3]f , x3) + λ(x1, x2, [x3, y2, y3]f )

then (V, [, , ]f,λ) is isomorphic to one and only one of the following: for every
α ∈ F, α 6= 0,

(a)[z1, z2, z3]f,λ = αz3, [z1, z2, zi]f,λ = zi, 3 < i ≤ n;

(b)[z1, z2, z3]f,λ = αz3, [z1, z2, z4]f,λ = z4+z3, [z1, z2, zj]f,λ = zj , 5 ≤ j ≤ n;

(c)[z1, z2, z3]f,λ = 0, [z1, z2, zi]f,λ = zi, 3 < i ≤ n.

2 Structures on 3-Lie Algebras (V, [, , ]f,λ)

In this section we first discuss the metric structures on the 3-Lie algebras
(V, [, , ]f,λ). For the simplicity, in the following the multiplication [, , ]f,λ is
denoted by [, , ].

Theorem 2.1 There does not exist metric structures on the 3-Lie algebras
in Lemma 1.2.

Proof. Let B : V × V → F be a bilinear symmetric form on V which
satisfies Eq (4). Then by Lemma 1.2, if (V, [, , ]f,λ) is a 3-Lie algebra of the
case (a), we have

B(z3, z1) = B([z1, z2, z3], z1) = B(z2, [z3, z1, z1]) = 0,
B(z3, z2) = B([z3, z1, z2], z2) = B(z3, [z1, z2, z2]) = 0,
B(z3, z3) = B([z1, z2, z3], z3) = B(z1, [z2, z3, z3]) = 0,
B(z3, zj) = B(z3, [z1, z2, zj]) = B(z1, [z2, z3, zj ]) = 0, 4 ≤ j ≤ m,

Therefore, B(z3, V ) = 0, that is, B is degenerated. Therefore, there does
not exist metric structures on the 3-Lie algebra of the case (a).

By the similar discussion, there do not exist metric structures on the 3-Lie
algebras of the case (b) and (c). The proof is completed.

Theorem 2.2 The 3-Lie algebras (V, [, , ]f,λ) in Lemma 1.2 are two-step
solvable, but non-nilpotent.

Proof. By Lemma 1.2, for the 3-Lie algebras of the cases (a) and (b), we
have

V (1) = [V, V, V ] =
n
∑

i=3

Fzi, V
(2) = [V (1), V (1), V ] = [

n
∑

i=3

Fzi,
n
∑

i=3

Fzi, V ] = 0.

In the case (c),

V (1) = [V, V, V ] =
n
∑

i=4

Fzi, V
(2) = [V (1), V (1), V ] = [

n
∑

i=4

Fzi,
n
∑

i=4

Fzi, V ] = 0.
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Therefore, the 3-Lie algebras are two-step solvable.
Since the left multiplication ad(z1, z2) has the eigenvalue 1, ad(z1, z2) is

non-nilpotent. Therefore, the 3-Lie algebras in Lemma 1.2 are non-nilpotent.
The proof is completed.

In the following we study the derivation algebras of 3-Lie algebras in Lemma
1.2. Let D : V → V be any derivation of V , and let the matrix form of D

in the basis {z1, · · · , zn} be A = (aij), 1 ≤ i, j ≤ n, that is, D(zi) =
n
∑

j=1
aijzj .

Then D =
n
∑

i,j=1
aijEij , where Eij is the matrix unit with the number 1 in the

position ith-row and jth-column, 1 ≤ i, j ≤ n.

Theorem 2.3 For 3-Lie algebras in Lemma 1.2, we have the following re-
sult:

1) If (V, [, , ]f,λ) is the case (a), then dim ad(V ) = 2n− 3 and

ad(V ) = F
(

αE33 +
n
∑

k=4

Ekk

)

+
n
∑

k=3

(

FE1k + FE2k

)

. (5)

2) If (V, [, , ]f,λ) is the case (b), then dim ad(V ) = 2n− 3 and

ad(V ) = F
(

αE33 + E43 +
n
∑

k=3

Ekk

)

+
n
∑

k=3

(

FE1k + FE2k

)

. (6)

3) If (V, [, , ]f,λ) is the case (c), then dim ad(V ) = 2n− 5 and

ad(V ) = F
(

n
∑

k=4

Ekk

)

+
n
∑

k=4

(

FE1k + FE2k

)

. (7)

Proof. If (V, [, , ]f,λ) is the case (a), by the direct computation by Lemma
1.2, the matrix form of left multiplications ad(zi, zj) are as follows:

ad(z1, z2) = αE33 +
n
∑

k=4

Ekk, ad(z1, z3) = −αE23, ad(z1, zk) = −E2k, 4 ≤ k ≤ n,

ad(z2, z3) = αE13, ad(z2, zk) = E1k, 4 ≤ k ≤ n.

Therefore, {ad(z1, zk), ad(z2, zl), 2 ≤ k ≤ n, 3 ≤ l ≤ n} is a basis of ad(V ), we
obtain Eq.(5) and dim ad(V ) = 2n− 3.

If (V, [, , ]f,λ) is the case (a), by Lemma 1.2, the matrix form of left multi-
plications ad(zi, zj) are as follows:

ad(z1, z2) = αE33+E43+
n
∑

k=4

Ekk, ad(z1, z3) = −αE23, ad(z1, z4) = −E24−E23,

ad(z1, zk) = −E2k, 5 ≤ k ≤ n, ad(z2, z3) = αE13, ad(z2, z4) = E14 + E13,
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ad(z2, zk) = E1k, 5 ≤ k ≤ n.

Therefore, {ad(z1, zk), ad(z2, zl), 2 ≤ k ≤ n, 3 ≤ l ≤ n} is a basis of ad(V ), we
obtain Eq.(6) and dim ad(V ) = 2n− 3.

f (V, [, , ]f,λ) is the case (c), by Lemma 1.2,

ad(z1, z2) =
n
∑

k=4

Ekk, ad(z1, zk) = −E2k, ad(z2, zk) = E1k, 4 ≤ k ≤ n.

Therefore, {ad(z1, zk), ad(z2, zj), 2 ≤ k ≤ n, 3 6= k, 4 ≤ j ≤ n} is a basis of
ad(V ), we obtain Eq.(7) and dim ad(V ) = 2n− 5. The proof is completed.

Theorem 2.4 For 3-Lie algebras in Lemma 1.2, the derivation algebras are
as follows:

1) For the case (a), if α = 1, dimDer(V ) = n2 − 2n+ 3,

Der(V ) = F (E11 − E22) +
n
∑

k=2
FE1k +

n
∑

k 6=2,k=1
FE2k +

n
∑

j,k=3
FEjk.

If α 6= 1, dimDer(V ) = n2 − 4n+ 8,

Der(V ) = F (E11 − E22) +
n
∑

k=2
FE1k +

n
∑

k 6=2,k=1
FE2k +

n
∑

j,k=4
FEjk.

2) For the case (b), dimDer(V ) = n2 − 5n+ 13,

Der(V ) = F (E11 − E22) +
n
∑

j=2
FE1j +

n
∑

j 6=2,j=1
FE2j+ F (E33 +E44)

+F (E43 + (α− 1)E44) +
n
∑

j=5
F (Ej3 + (1− α)Ej4) +

n
∑

j,k=5
FEjk.

3) For the case (c), dimDer(V ) = n2 − 4n+ 11,

Der(V ) = F (E11−E22)+
n
∑

k=2
FE1k +

n
∑

k 6=2,k=1
FE2k +

3
∑

k=1
FE3k +

n
∑

j,k=4
FEjk.

Proof. If (V, [, , ]f,λ) is the case (a), by Lemma 1.2 and D([z1, z2, z3]) =
[D(z1), z2, z3] + [z1, D(z2), z3] + [z1, z2, D(z3)] = αD(z3), we have

α
n
∑

k=1

a3kzk = α(a11 + a22 + a33)z3 +
n
∑

k=4

a3kzk,

then we have
a31 = a32 = a11 + a22 = 0, αa3k = a3k, 4 ≤ k ≤ n.

FromD([z1, z2, zj ]) = [D(z1), z2, zj]+[z1, D(z2), zj ]+[z1, z2, D(zj)] = D(zj),
for 4 ≤ j ≤ n, we have

n
∑

k=1
ajkzk = (a11 + a22 + αaj3)z3 +

n
∑

k=4
ajkzk,

then we have aj1 = aj2 = 0, a11 + a22 + (α− 1)aj3 = 0, 4 ≤ j ≤ n.

Summarizing above discussions, we have the matrix form of D is in the
case α = 1,

D = a11(E11−E22)+ a12E12+ a21E21+
n
∑

k=3
(a1kE1k + a2kE2k)+

n
∑

j,k=3
ajkEjk.
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In the case α 6= 1, D = a11(E11 − E22) + a12E12 + a21E21 +
n
∑

k=3
(a1kE1k +

a2kE2k) +
n
∑

j,k=4
ajkEjk. The result 1) is follows.

If (V, [, , ]f,λ) is the case (b), from D([z1, z2, z3]) = αD(z3), we have

α
n
∑

k=1

a3kzk = (αa11 + αa22 + αa33 + a34)z3 +
n
∑

k=4

a3kzk,

then a31 = a32 = α(a11 + a22) + a34 = 0, αa3k = a3k, 4 ≤ k ≤ n.

Since D([z1, z2, z4]) = D(z3 + z4), we get

(a11 + a22 + a44)(z4 + z3) + αa43z3 +
n
∑

k=5

a4kzk =
n
∑

k=1

(a4k + a3k)zk.

Then we have a41 = a42 = 0, a11 + a22 +a44 = a44 + a34, a3k = 0, 5 ≤ k ≤ n,

a11 + a22 + a44 +αa43 = a43 + a33.

From D([z1, z2, zj]) = D(zj), for 5 ≤ j ≤ n, we have

n
∑

k=1

ajkzk = (a11 + a22)zj + (αaj3 + aj4)z3 +
n
∑

k=4

ajkzk.

Summarizing above discussions, we have

a11 + a22 = 0, aj1 = aj2 = a3k = 0, 4 ≤ k ≤ n, 3 ≤ j ≤ n;

a44 + (α− 1)a43 = a33, aj4 = (1− α)aj3, 5 ≤ j ≤ n.

D = a11(E11 − E22) +
n
∑

j=2
a1jE1j +

n
∑

j 6=2,j=1
a2jE2j+ a33(E33 +E44)

+a43(E43 + (α− 1)E44) +
n
∑

j=5
aj3(Ej3 + (1− α)Ej4) +

n
∑

j,k=5
ajkEjk.

The result 2) is follows.
By the completely similar discussions to above, for the case (c),

D = a11(E11−E22)+
n
∑

k=2
a1kE1k +

n
∑

k 6=2,k=1
a2kE2k +

3
∑

k=1
a3kE3k +

n
∑

j,k=4
ajkEjk.

The proof is completed.
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