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Abstract

Based on (G
′
/G)-expansion method, new traveling and non-traveling

exact solutions of (1+1)-dimensional Boussinesq equations with variable
coefficients are established. To obtain the traveling wave solution, we
expand ξ(x, t) = x − V t to a more general form ξ(x, t) = f(η), η =
x − V t. We also suppose the non-traveling wave solution ξ(x, t) with
variable separation forms, such as ξ(x, t) = f(x) + g(t) or ξ(x, t) =
f(x)g(t). Finally, a series of important novel solutions of the equations
are obtained.
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1 Introduction

The investigation of the exact solutions of nonlinear evolution equations (NLEEs)
plays a vital role in the study of nonlinear physical phenomena. For example,
the wave phenomena observed in fluid dynamics, elastic media, optical fibers,
etc. In recent decades, many mathematicians devote to find the exact solutions
of nonlinear PDEs. Meanwhile, the development of mathematical softwares
such as Mathematica, Maple and Matlab, provide more effective tools to find
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the exact solutions of nonlinear PDEs. Tools such as Mathematica can be used
to deal with complex calculation.

Recently, a brilliant achievement is that many effective methods have been
established to obtain the exact solutions of NLEEs, such as homogenous bal-
ance method [1], the F-expansion method [2], the exp-function expansion
method [3], the auxiliary equation method [4], the hyperbolic function method
[5], the modified extended Fan sub-equation method [6], the tanh method [7],
the ansatz method [8], the Jacobi elliptic function expansion [9] etc. However,
one needs to be extremely careful to apply these methods since there is a pos-
sibility that blindly applying these techniques could lead to misleading results
as pointed out by Kudryashov [10-12] and Popovych indicated two more com-
mon errors concerning the similarity and linearizability of differential equations
[13]. More recently, the (G

′
/G)-expansion method has been proposed to obtain

traveling wave solutions, which is based on the homogenous balance principle
and the linear ordinary differential equation (LODE) theory. By using this
simple and effective method, M.L. Wang, G. Ebadi and others construct the
traveling wave solution of K(m,n) equation, high-order Schödinger equation,
BBM equation etc. [14-23].

Inspired by that, we use (G
′
/G)-expansion method to construct a new kind

of exact solutions of the (1+1)-dimensional Boussinesq equations with variable
coefficients (CBEVC):

{

ut +B(t)(uux + vx) = 0
vt +B(t){[(1 + v)u]x +

1
3
uxxx} = 0

, (1.1)

where B(t) is an arbitrary function of time t, and B(t) 6= 0, 1. If B(t) = 1,
(1.1) can be reduced to the famous (1+1)-dimensional classical Boussinesq
equations, which was originally introduced to describe the propagation of long
waves in the shallow water, see [24] and references therein. Eq.(1.1) appears
in many areas such as waves in the deep water, fluid dynamics etc., and it
seems that the variable coefficients of the nonlinear evolution equations could
make those models realistic, see [25,26] and references therein. Actually, in
Refs.[27], Lax pairs and Darboux transformation have already been introduced
and applied to the variant-coefficient variant Boussinesq (VCVB) Model [28],
which is the general form of CBEVC. However, to our knowledge, no work has
been done on CBEVC by the (G

′
/G)-expansion method and solutions with

variable separation forms.
The outline of the paper is as follows. In Section 2, we will describe the

(G
′
/G)-expansion method and provide the main steps of the method. In Sec-

tion 3, we will discuss the (1+1)-dimensional Boussinesq equation with variable
coefficients, and construct the traveling wave solutions (TWS) and two differ-
ent kinds of non-traveling wave solutions (NTWS) for the CBEVC (1) via the
(G

′
/G)-expansion method. Some conclusions and prospects will be given in
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the last section.

2 (G
′
/G)-expansion method

The fundamental steps of the (G
′
/G)-expansion method can be introduced

briefly as follows.
By supposing the given (1+1)-dimensional nonlinear evolution equation for

u(x, t) as:
F (u, ut, ux, utt, uxt, uxx, . . .) = 0, (2.1)

where F is a polynomial of u(x, t) and its partial derivatives.
Step 1. Taking u(x, t) = u(ξ), ξ = ξ(x, t), transform partial differential
equation(2.1) to the ordinary differential equation:

F (u, u′, u
′′

, ...) = 0, (2.2)

Step 2. Supposing the solution of (2.1) can be expressed in (G
′
/G) as follows:

u(ξ) =
N
∑

i=1

ai(
G

′
(ξ)

G(ξ)
)i, (2.3)

where ai are real constants with aN 6= 0 and N is a positive integer to be
determined. The function G(ξ) is the solution of the auxiliary linear ordinary
differential equation:

G
′′

(ξ) + λG
′

(ξ) + µG (ξ) = 0, (2.4)

where λ and µ are real constants to be determined.
Step 3. Determining N. Considering homogenous balance between the highest
order derivatives with the highest order nonlinear terms in (2.2).
Step 4. Substituting the general solution of (2.4) together with (2.3) into

Eq.(2.2) yields an algebraic equation involving powers of (G
′
(ξ)

G(ξ)
). Collecting the

coefficients of same power of (G
′
(ξ)

G(ξ)
) and setting them to zero, we can obtain a

system of algebraic equations for ai, λ, µ. Solving the system by Matlab, Maple
or Mathematica to determine these constants. Finally, we obtain solutions of
Eq.(2.2) by depending on the sign of the discriminant ∆ = λ2 − 4µ. Then we
will find the exact solutions of Eq.(2.1).

In this paper, when solving the traveling wave solution, we expand ξ(x, t) =
x − V t to a more general form ξ(x, t) = f(η), η = x − V t. Considering the
non-traveling wave solution, in general, we suppose that ξ(x, t) is in variable
separation forms, such as ξ(x, t) = f(x)+g(t) or ξ(x, t) = f(x)g(t). It is worthy
pointing out that, to our knowledge, the solutions of the (1+1)-dimensional
Boussinesq equations with variable coefficients listed in this paper are not
found in the other papers.
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3 The traveling wave solution

We suppose that the solution is in form of travelling wave solution as follows:

ξ(x, t) = f(η), η = x− V t, (3.1)

where f(η) is an arbitrary function of the indicated variables.
Considering the homogenous balance between the highest order derivatives

and the non-linear terms, we can obtain

m = 1, n = 2. (3.2)

So (2.3) can be rewritten as follows:







u(x, t) = a0 + a1(
G

′

G
)

v(x, t) = b0 + b1(
G

′

G
) + b2(

G
′

G
)2

, (3.3)

Substituting (3.3), (2.3) into (1.1), collecting the terms of G
′
(ξ)

G(ξ)
with the same

power, then letting each coefficient equals to zero, we can derive a set of over-
determined algebraic equations for ai and bi(which is Eqs.(3.4)):

b1V µf
′

(η)−a1µB(t)f
′

(η)−a1b0µB(t)f
′

(η)−a0b1µB(t)f
′

(η)− 1

3
a1µB(t)f

′′

(η)

+
2

3
a1λµB(t)f

′

(η)f
′′

(η)− 1

3
µB(t)f

′

(η)[a1λ
2f

′

(η)2+2a1µf
′

(η)2−a1λf
′

(η)] = 0,

b1V µf
′

(η)−a1µB(t)f
′

(η)−a1b0µB(t)f
′

(η)−a0b1µB(t)f
′

(η)− 1

3
a1µB(t)f

′′

(η)

+
2

3
a1λµB(t)f

′

(η)f
′′

(η)− 1

3
µB(t)f

′

(η)[a1λ
2f

′

(η)2+2a1µf
′

(η)2−a1λf
′

(η)] = 0,

−3a1b2B(t)f
′

(η)− 2a1B(t)f
′

(η)3 = 0,

2b2V f
′

(η)− 2a1b1B(t)f
′

(η)− 2a0b2B(t)f
′

(η)− 3a1b2λB(t)f
′

(η)

−2a1λB(t)f
′

(η)3+
4

3
a1B(t)f

′

(η)f
′′

(η)− 2

3
B(t)f

′

(η)[3a1λf
′

(η)2−a1f
′′

(η)] = 0,

b1V f
′

(η) + 2b2V λf
′

(η)− a1B(t)f
′

(η)− a1b0B(t)f
′

(η)− a0b1B(t)f
′

(η)

−2a1b1λB(t)f
′

(η)− 2a0b2λB(t)f
′

(η)− 3a1b2µB(t)f
′

(η)

−2a1µB(t)f
′

(η)3− 2

3
λB(t)f

′

(η)[3a1λf
′

(η)2−a1f
′′

(η)]− 1

3
B(t)f

′

(η)[a1λ
2f

′

(η)2

+2a1µf
′

(η)2 − a1λf
′′

(η)] +
1

3
B(t)[6a1λf

′

(η)f
′′

(η)− a1f
(3)(η)] = 0,

b1V λf
′

(η) + 2b2V µf
′

(η)− a1λB(t)f
′

(η)− a1b0λB(t)f
′

(η)
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−a0b1λB(t)f
′

(η)− 2a1b1µB(t)f
′

(η)− 2a0b2µB(t)f
′

(η)

−2

3
µB(t)f

′

(η)[3a1λf
′

(η)2 − a1f
′′

(η)]− 1

3
λB(t)f

′

(η)[a1λ
2f

′

(η)2 + 2a1µf
′

(η)2

−a1λf
′′

(η)] +
1

3
B(t)[2a1λ

2f
′

(η)f
′′

(η) + 4a1µf
′

(η)f
′′

(η)− a1λf
(3)(η)] = 0,

a1V µf
′

(η)− a0a1µB(t)f
′

(η)− b1µB(t)f
′

(η) = 0,

−a1
2B(t)f

′

(η)− 2b2B(t)f
′

(η) = 0,

a1V f
′

(η)− a0a1B(t)f
′

(η)− b1B(t)f
′

(η)− a1
2λB(t)f

′

(η)− 2b2λB(t)f
′

(η) = 0,

a1V λf
′

(η)−a0a1λB(t)f
′

(η)−b1λB(t)f
′

(η)−a1
2µB(t)f

′

(η)−2b2µB(t)f
′

(η) = 0.

Let us take f (3)(η) = f
′′
(η), then f(η) = l1e

η + l2 + l3η, where η = x− V t.
Using Mathematica to solve Eqs.(3.4), we would end up with the explicit
expressions of the constants a0, a1, a2, b0, b1:
Case 1:

a0 =

√
3f

′′
(η) + 3V f

′
(η)

B(t)
−

√
3λf

′
(η)2

3f ′(η)
, a1 = −2f

′
(η)√
3

,

b0 =
1

3f ′(η)2
[f

′′

(η)2 − f
′′

(η)f
′

(η)− 3f
′

(η)2 + λf
′′

(η)f
′

(η)2

−2µf
′

(η)4], b1 =
2

3
f

′′

(η)− 2

3
λf

′

(η)2, b2 = −2

3
f

′

(η)2.

It is well known that the general solutions of Eq. (2.4) are as follows:

G
′
(ξ)

G(ξ)
=























−λ
2
+ δ1

C1sinh(δ1f)+C2cosh(δ1f)

C1cosh(δ1f)+C2sinh(δ1f)
, λ2 − 4µ > 0,

−λ
2
+ δ2

−C1sin(δ2f)+C2cos(δ2f)
C1cos(δ2f)+C2sin(δ2f)

, λ2 − 4µ < 0,

−λ
2
+ C2

C1+C2f(η)
, λ2 − 4µ = 0.

where δ1 =

√
λ2−4µ

2
, δ2 =

√
4µ−λ2

2
, C1, C2 are arbitrary constants. The ex-

act solutions are expressed by three types of functions, which are hyperbolic,
trigonometric and rational function solutions, respectively.

Therefore we can get:






















































































u11 =

√
3f

′′
(η) + 3V f

′
(η)

B(t)
−

√
3λf

′
(η)2

3f ′(η)

−
2f

′
(η)[−λ

2
+ δ1

C1sinh(δ1f)+C2cosh(δ1f)

C1cosh(δ1f)+C2sinh(δ1f)
]

√
3

,

v11 =
1

3f ′(η)2
[f

′′

(η)2 − f
′′

(η)f
′

(η)− 3f
′

(η)2 + λf
′′

(η)f
′

(η)2 − 2µf
′

(η)4]

+[
2

3
f

′′

(η)− 2

3
f

′

(η)2]{−λ

2
+

δ1[C2cosh(fδ1) + C1sinh(fδ1)]

C1cosh(fδ1) + C2sinh(fδ1)
}

−2

3
f

′

(η)2{−λ

2
+

δ1[C2cosh(fδ1) + C1sinh(fδ1)]

C1cosh(fδ1) + C2sinh(fδ1)
}2
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





















































































u12 =

√
3f

′′
(η) + 3V f

′
(η)

B(t)
−

√
3λf

′
(η)2

3f ′(η)

−
2f

′
(η){−λ

2
+ δ2[C2cos(fδ2)−C1sin(fδ2)]

C1cos(fδ2)+C2sin(fδ2)
}

√
3

,

v12 =
1

3f ′(η)2
[f

′′

(η)2 − f
′′

(η)f
′

(η)− 3f
′

(η)2 + λf
′′

(η)f
′

(η)2 − 2µf
′

(η)4]

+[
2

3
f

′′

(η)− 2

3
λf

′

(η)2]{−λ

2
+

δ2[C2cos(fδ2)− C1sin(fδ2)]

C1cos(fδ2) + C2sin(fδ2)
}

−2

3
f

′

(η)2{−λ

2
+

δ2[C2cos(fδ2)− C1sin(fδ2)]

C1cos(fδ2) + C2sin(fδ2)
}2;



























































u13 = −
2(−λ

2
+ C2

C1+C2f(η)
)f

′
(η)

√
3

+

√
3f

′′
(η) + 3V f

′
(η)

B(t)
−
√
3λf

′
(η)2

3f ′(η)
,

v13 = −2

3
(−λ

2
+

C2

C1 + C2f(η)
)2f

′

(η)2

+(−λ

2
+

C2

C1 + C2f(η)
)[
2

3
f

′′

(η)− 2

3
λf

′

(η)2]

+
1

3f ′(η)2
[f

′′

(η)2 − f
′′

(η)f
′

(η)− 3f
′

(η)2 + λf
′′

(η)f
′

(η)2 − 2µf
′

(η)4].

Case 2:

a0 =
−
√
3f

′′
(η) + 3V f

′
(η)

B(t)
+
√
3λf

′
(η)2

3f ′(η)
, a1 =

2f
′
(η)√
3

,

b0 =
1

3f ′(η)2
[f

′′

(η)2 − f
′′

(η)f
′

(η)− 3f
′

(η)2 + λf
′′

(η)f
′

(η)2

−2µf
′

(η)4], b1 =
2

3
f

′′

(η)− 2

3
λf

′

(η)2, b2 = −2

3
f

′

(η)2.

Using the same method mentioned in Result 1, we will get three types of
solutions as follows:










































































u21 =
−
√
3f

′′
(η)+

3V f
′
(η)

B(t)
+
√
3λf

′
(η)2

3f ′ (η)

+
2f

′
(η){−λ

2
+ δ1[C2cosh(fδ1)+C1sinh(fδ1)]

C1cosh(fδ1)+C2sinh(fδ1)
}

√
3

,

v21 =
1

3f ′ (η)2
[f

′′
(η)2 − f

′′
(η)f

′
(η)− 3f

′
(η)2 + λf

′′
(η)f

′
(η)2

−2µf
′

(η)4] + [
2

3
f

′′

(η)− 2

3
λf

′

(η)2]{−λ

2
+

δ1[C2cosh(fδ1) + C1sinh(fδ1)]

C1cosh(fδ1) + C2sinh(fδ1)
}

−2

3
λf

′

(η)2{−λ

2
+

δ1[C2cosh(fδ1) + C1sinh(fδ1)]

C1cosh(fδ1) + C2sinh(fδ1)
}2;
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





















































































u22 =
−
√
3f

′′
(η) + 3V f

′
(η)

B(t)
+
√
3λf

′
(η)2

3f ′(η)

+
2f

′
(η){−λ

2
+ δ2[C2cos(fδ2)−C1sin(fδ2)]

C1cos(fδ2)+C2sin(fδ2)
}

√
3

,

v22 =
1

3f ′(η)2
[f

′′

(η)2 − f
′′

(η)f
′

(η)− 3f
′

(η)2 + λf
′′

(η)f
′

(η)2

−2µf
′

(η)4] + [
2

3
f

′′

(η)− 2

3
λf

′

(η)2]{−λ

2
+

δ2[C2cos(fδ2)− C1sin(fδ2)]

C1cos(fδ2) + C2sin(fδ2)
}

−2

3
λf

′

(η)2{−λ

2
+

δ2[C2cos(fδ2)− C1sin(fδ2)]

C1cos(fδ2) + C2sin(fδ2)
}2;



















































u23 =
2(−λ

2
+ C2

C1+C2f(η)
)f

′
(η)

√
3

+
−
√
3f

′′
(η) + 3V f

′
(η)

B(t)
+
√
3λf

′
(η)2

3f ′(η)
,

v23 = −2

3
(−λ

2
+

C2

C1 + C2f(η)
)2f

′

(η)2 + (−λ

2
+

C2

C1 + C2f(η)
)[
2

3
f

′′

(η)

−2

3
λf

′

(η)2] +
1

3f ′(η)2
[f

′′

(η)2 − f
′′

(η)f
′

(η)

−3f
′

(η)2 + λf
′′

(η)f
′

(η)2 − 2µf
′

(η)4].

4 Non-traveling wave solution

In this section, we will study two kinds of non-traveling wave solutions and
then use the variable separation approach to get some of their solutions.

4.1 ξ(x, t) = f(x)g(t)

Assuming (1.1) has the following form of non-traveling wave solution:

ξ(x, t) = f(x)g(t), (4.1)

where f(x) and g(t) are arbitrary functions of the indicated variables.
Hereby the general solutions of Eq.(2.4) are as follows:

G
′
(ξ)

G(ξ)
=























−λ
2
+ δ1

C1sinh(δ1fg)+C2cosh(δ1fg)

C1cosh(δ1fg)+C2sinh(δ1fg)
, λ2 − 4µ > 0,

−λ
2
+ δ2

−C1sin(δ2fg)+C2cos(δ2fg)
C1cos(δ2fg)+C2sin(δ2fg)

, λ2 − 4µ < 0,

−λ
2
+ C2

C1+C2f(η)
, λ2 − 4µ = 0.

where δ1 =

√
λ2−4µ

2
, δ2 =

√
4µ−λ2

2
, C1, C2 are arbitrary constants.

Considering the homogenous balance between the highest order derivatives
and the non-linear terms we have:

m = 1, n = 2, (4.2)
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So (2.3) can be written as follows (where a0, a1, b0, b1, b2 are all constants):







u(x, t) = a0 + a1(
G

′

G
)

v(x, t) = b0 + b1(
G

′

G
) + b2(

G
′

G
)2

, (4.3)

Substituting (4.3), (2.3) into equations (1.1) we have: (Eqs.(4.4))

−a1µB(t)g(t)f
′

(x)− a1b0µB(t)g(t)f
′

(x)− a0b1µB(t)g(t)f
′

(x)− b1µf(x)g
′

(t)

+
2

3
a1λµB(t)g(t)2f

′

(x)f
′′

(x)−1

3
µB(t)g(t)f

′

(x)[a1λ
2g(t)2f

′

(x)2+2a1µg(t)
2f

′

(x)2

−a1λg(t)f
′′

(x)]− 1

3
a1µB(t)g(t)f (3)(x) = 0,

−3a1b2B(t)g(t)f
′

(x)− 2a1B(t)g(t)3f
′

(x)3 = 0,

−2a1b1B(t)g(t)f
′

(x)− 2a0b2B(t)g(t)f
′

(x)− 3a1b2λB(t)g(t)f
′

(x)

−2a1λB(t)g(t)3f
′

(x)3 − 2b2f(x)g
′

(t) +
4

3
a1g(t)

2B(t)f
′

(x)f
′′

(x)

−2

3
B(t)g(t)f

′

(x)[4a1λg(t)
2f

′

(x)2 − a1g(t)f
′′

(x)] = 0,

−a1B(t)g(t)f
′

(x)− a1b0B(t)g(t)f
′

(x)− a0b1B(t)g(t)f
′

(x)− 2a1b1λg(t)f
′

(x)

−2a0b2λB(t)g(t)f
′

(x)−3a1b2µB(t)g(t)f
′

(x)−2a1µB(t)g(t)3f
′

(x)3−b1f(x)g
′

(t)

−2b2λf(x)g
′

(t)− 2

3
λB(t)g(t)f

′

(x)[4a1λg(t)
2f

′

(x)2 − a1g(t)f
′′

(x)]

−1

3
B(t)g(t)f

′

(x)(a1λ
2g(t)2f

′

(x)2 + 2a1µg(t)
2f

′

(x)2 − a1λg(t)f
′′

(x))

+
1

3
B(t)(6a1λg(t)

2f
′

(x)f
′′

(x)− a1g(t)f
(3)(x)) = 0,

−a1λB(t)g(t)f
′

(x)−a1b0λB(t)g(t)f
′

(x)−a0b1λB(t)g(t)f
′

(x)−2a1b1µB(t)g(t)f
′

(x)

−2a0b2µB(t)g(t)f
′

(x)− b1λf(x)g
′

(t)− 2b2µf(x)g
′

(t)

−2

3
µB(t)g(t)f

′

(x)[4a1λg(t)
2f

′

(x)2 − a1g(t)f
′′

(x)]

−1

3
λB(t)g(t)f

′

(x)[a1λ
2g(t)2f

′

(x)2 + 2a1µg(t)
2f

′

(x)2 − a1λg(t)f
′′

(x)]

+
1

3
B(t)[−a1λg(t)f

′′

(x) + 2a1λ
2g(t)2f

′

(x)f
′′

(x) + 4a1µ
2g(t)2f

′

(x)f
′′

(x)] = 0,

−a0a1µB(t)g(t)f
′

(x)− b1µB(t)g(t)f
′

(x)− a1µf(x)g
′

(t) = 0,

−a1
2B(t)g(t)f

′

(x)− 2b2B(t)g(t)f
′

(x) = 0,

−a0a1B(t)g(t)f
′

(x)− b1B(t)g(t)f
′

(x)− a1
2λB(t)g(t)f

′

(x)
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−2b2λB(t)g(t)f
′

(x)− a1f(x)g
′

(t) = 0,

−a0a1λB(t)g(t)f
′

(x)− b1λB(t)g(t)f
′

(x)− a1
2µB(t)g(t)f

′

(x)

−2b2µB(t)g(t)f
′

(x)− a1λf(x)g
′

(t) = 0,

By using the Mathematica software, Eqs.(4.4) can be solved. Since g(t) 6=
0, letting:

−8µB(t)g(t)3f
′
(x)2f

′′
(x)

3
√
3

+
8µ2B(t)g(t)3f

′
(x)2f

′′
(x)

3
√
3

= 0,

which can be reduced as follows:

(µ2 − µ)f
′′

(x) = 0.

Then

f
′′

(x) = 0 or µ = 0 or µ = 1.

When µ = 0, to ensure solutions of the equations were existed,

λ = 0 or f
′′

(x)− f (3)(x) = 0.

while µ = 1, we have

λ = 0 or f
′′

(x)− f (3)(x) = 0.

Therefore, this section is partitioned into the five different parts to discuss
solutions in different types:

I. f
′′
(x) = 0

II. µ = 0, λ = 0
III. µ = 0, f

′′
(x)− f (3)(x) = 0

IV. µ = 1, λ = 0
V. µ = 1, f

′′
(x)− f (3)(x) = 0

Type I: When f
′′
(x) = 0, then f(x) = C3x+ b, we get:

Case 1:

a0 =
−4

√
3λB(t)g(t)2C3

2 − 9(C3x+ b)g
′
(t)

9B(t)g(t)C3
, a1 = −2g(t)C3√

3
,

b0 =
1

27
(−27+7λ2g(t)2C3

2−18µg(t)2C3
2), b1 = −8

9
λg(t)2C3

2, b2 = −2

3
g(t)2C3

2.
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By means of the same method as above, novel solutions can be constructed as
follows:















































































u11 = −
2C3g(t){−λ

2
+ δ1[C2cosh(δ1fg)+C1sinh(δ1fg)]

C1cosh(δ1fg)+C2sinh(δ1fg)
}

√
3

+
−4

√
3C3

2λB(t)g(t)2 − 9(b+ C3x)g
′
(t)

9C3B(t)g(t)
,

v11 =
1

27
[−27 + 7C3

2λ2g(t)2 − 18C3
2µg(t)2]

−8

9
C3

2λg(t)2{−λ

2
+

δ1[C2cosh(δ1fg) + C1sinh(δ1fg)]

C1cosh(δ1fg) + C2sinh(δ1fg)
}

−2

3
C3

2g(t)2{−λ

2
+

δ1[C2cosh(δ1fg) + C1sinh(δ1fg)]

C1cosh(δ1fg) + C2sinh(δ1fg)
}2;















































































u12 = −
2C3g(t){−λ

2
+ δ2[C2cos(δ2fg)−C1sin(δ2fg)]

C1cos(δ2fg)+C2sin(δ2fg)
}

√
3

+
−4

√
3C3

2λB(t)g(t)2 − 9(b+ C3x)g
′
(t)

9C3B(t)g(t)
,

v12 =
1

27
[−27 + 7C3

2λ2g(t)2 − 18C3
2µg(t)2]

−8

9
C3

2λg(t)2{−λ

2
+

δ2[C2cos(δ2fg)− C1sin(δ2fg)]

C1cos(δ2fg) + C2sin(δ2fg)
}

−2

3
C3

2g(t)2{−λ

2
+

δ2[C2cos(δ2fg)− C1sin(δ2fg)]

C1cos(δ2fg) + C2sin(δ2fg)
}2;



























































u13 = −
2C3[−λ

2
+ C2

C1+C2f(x)g(t)
g(t)]

√
3

+
−4

√
3C3

2λB(t)g(t)2 − 9(b+ C3x)g
′
(t)

9C3B(t)g(t)
,

v13 = −8
9
C3

2λ[−λ
2
+ C2

C1+C2f(x)g(t)
]g(t)2 − 2

3
C3

2[−λ

2
+

C2

C1 + C2f(x)g(t)
]2g(t)2

+
1

27
[−27 + 7C3

2λ2g(t)2 − 18C3
2µg(t)2].

Case 2:

a0 =
4
√
3λB(t)g(t)2C3

2 − 9(C3x+ b)g
′
(t)

9B(t)g(t)C3
, a1 =

2g(t)C3√
3

,

b0 =
1

27
[−27+7λ2g(t)2C3

2−18µg(t)2C3
2], b1 = −8

9
λg(t)2C3

2, b2 = −2

3
g(t)2C3

2.
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Calculating Case 2 with aforementioned method, we get:















































































u21 =
2C3g(t){−λ

2
+ δ1[C2cosh(δ1fg)+C1sinh(δ1fg)]

C1cosh(δ1fg)+C2sinh(δ1fg)
}

√
3

+
4
√
3C3

2λB(t)g(t)2 − 9(b+ C3x)g
′
(t)

9C3B(t)g(t)
,

v12 =
1

27
[−27 + 7C3

2λ2g(t)2 − 18C3
2µg(t)2]

−8

9
C3

2λg(t)2{−λ

2
+

δ1[C2cosh(δ1fg) + C1sinh(δ1fg)]

C1cosh(δ1fg) + C2sinh(δ1fg)
}

−2

3
C3

2g(t)2{−λ

2
+

δ1[C2cosh(δ1fg) + C1sinh(δ1fg)]

C1cosh(δ1fg) + C2sinh(δ1fg)
}2;











































































u22 =
2C3g(t){−λ

2
+ δ2[C2cos(δ2fg)−C1sin(δ2fg)]

C1cos(δ2fg)+C2sin(δ2fg)
}

√
3

+
4
√
3C3

2λB(t)g(t)2 − 9(b+ C3x)g
′
(t)

9C3B(t)g(t)
,

v22 =
1
27
[−27 + 7C3

2λ2g(t)2 − 18C3
2µg(t)2]

−8

9
C3

2λg(t)2{−λ

2
+

δ2[C2cos(δ2fg)− C1sin(δ2fg)]

C1cos(δ2fg) + C2sin(δ2fg)
}

−2

3
C3

2g(t)2{−λ

2
+

δ2[C2cos(δ2fg)− C1sin(δ2fg)]

C1cos(δ2fg) + C2sin(δ2fg)
}2;



























































u23 =
2C3g(t)[−λ

2
+ C2

C1+C2f(x)g(t)
]

√
3

+
4
√
3C3

2λB(t)g(t)2 − 9(b+ C3x)g
′
(t)

9C3B(t)g(t)
,

v23 = −8

9
C3

2λg(t)2[−λ

2
+

C2

C1 + C2f(x)g(t)
]− 2

3
C3

2g(t)2[−λ

2
+

C2

C1 + C2f(x)g(t)
]2

+
1

27
[−27 + 7C3

2λ2g(t)2 − 18C3
2µg(t)2].

Type II: If λ = 0, µ = 0, we can yield:
Case 1:

a0 = − f(x)g
′
(t)

B(t)g(t)f ′(x)
+

f
′′
(x)√

3f ′(x)
, a1 = −2g(t)f

′
(x)√

3
,

b0 =
−27f

′
(x)2 + 9f

′′
(x)2 − 9f

′
(x)f (3)(x)

27f ′(x)2
, b1 =

2

3
g(t)f

′′

(x), b2 = −2

3
g(t)2f

′

(x)2.
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In this situation, we can obtain the NTWS for rational functions:











































u11 = − 2C2g(t)f
′
(x)√

3[C1 + C2f(x)g(t)]
− f(x)g

′
(t)

B(t)g(t)f ′(x)
+

f
′′
(x)√

3f ′(x)
,

v11 = − 2C2
2g(t)2f

′
(x)2

3[C1 + C2f(x)g(t)]2
+

2C2g(t)f
′′
(x)

3[C1 + C2f(x)g(t)]

+
−27f

′
(x)2 + 9f

′′
(x)2 − 9f

′
(x)f (3)(x)

27f ′(x)2
.

Case 2:

a0 = − f(x)g
′
(t)

B(t)g(t)f ′(x)
− f

′′
(x)√

3f ′(x)
, a1 =

2g(t)f
′
(x)√

3
,

b0 =
−27f

′
(x)2 + 9f

′′
(x)2 − 9f

′
(x)f (3)(x)

27f ′(x)2
, b1 =

2

3
g(t)f

′′

(x), b2 = −2

3
g(t)2f

′

(x)2.

In this situation, λ2 − 4µ = 0, we can obtain the NTWS for rational
functions:











































u21 =
2C2g(t)f

′
(x)√

3[C1 + C2f(x)g(t)]
− f(x)g

′
(t)

B(t)g(t)f ′(x)
− f

′′
(x)√

3f ′(x)
,

v21 = − 2C2
2g(t)2f

′
(x)2

3[C1 + C2f(x)g(t)]2
+

2C2g(t)f
′′
(x)

3[C1 + C2f(x)g(t)]

+
−27f

′
(x)2 + 9f

′′
(x)2 − 9f

′
(x)f (3)(x)

27f ′(x)2
.

Type III: When µ = 0, f
′′
(x) = f (3)(x), we have:

Case 1:

a0 = −−3f
′′
(x) + 4λf

′
(x)2g(t)

3
√
3f ′(x)

− f(x)g
′
(t)

B(t)f ′(x)g(t)
, a1 = −2f

′
(x)g(t)√
3

,

b0 =
1

27f ′(x)2
[9f

′′

(x)2 − 9f
′′

(x)f
′

(x)− 27f
′

(x)2

+3λf
′′

(x)f
′

(x)2g(t) + 7λ2f
′

(x)4g(t)2],

b1 = −2

9
g(t)[−3f

′′

(x) + 4λf
′

(x)2g(t)], b2 = −2

3
f

′

(x)2g(t)2.
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









































































































u11 = −−3f
′′
(x) + 4λf

′
(x)2g(t)

3
√
3f ′(x)

− f(x)g
′
(t)

B(t)f ′(x)g(t)

−
2f

′
(x)g(t){−λ

2
+

|λ|
2
[C2cosh(

|λ|
2
fg)+C1sinh(

|λ|
2
fg)]

C1cosh(
|λ|
2
fg)+C2sinh(

|λ|
2
fg)

}
√
3

,

v11 =
1

27f ′(x)2
[9f

′′

(x)2 − 9f
′′

(x)f
′

(x)− 27f
′

(x)2 + 3λf
′′

(x)f
′

(x)2g(t)

+7λ2f
′

(x)4g(t)2]− 2

9
g(t)[−3f

′′

(x) + 4λf
′

(x)2g(t)]

{−λ

2
+

|λ|
2
[C2cosh(

|λ|
2
fg) + C1sinh(

|λ|
2
fg)]

C1cosh(
|λ|
2
fg) + C2cosh(

|λ|
2
fg)

}

−2

3
f

′

(x)2g(t)2(−λ

2
+

|λ|
2
(C1cosh(

|λ|
2
fg) + C2sinh(

|λ|
2
fg))

C1cosh(
|λ|
2
fg) + C2sinh(

|λ|
2
fg)

)2;











































u12 = −
2[ C2

C1+C2f(x)g(t)
]f

′
(x)g(t)

√
3

− −3f
′′
(x)

3
√
3f ′(x)

− f(x)g
′
(t)

B(t)f ′(x)g(t)
,

v12 = −2

3
[

C2

C1 + C2f(x)g(t)
]2f

′

(x)2g(t)2 +
2

3
[

f
′′
(x)C2g(t)

C1 + C2f(x)g(t)
]

+
1

27f ′(x)2
[9f

′′

(x)2 − 9f
′′

(x)f
′

(x)− 27f
′

(x)2]2.

Case 2:

a0 =
−3f

′′
(x) + 4λf

′
(x)2g(t)

3
√
3f ′(x)

− f(x)g
′
(t)

B(t)f ′(x)g(t)
, a1 =

2f
′
(x)g(t)√
3

,

b0 =
1

27f ′(x)2
[9f

′′

(x)2 − 9f
′′

(x)f
′

(x)− 27f
′

(x)2

+3λf
′′

(x)f
′

(x)2g(t) + 7λ2f
′

(x)4g(t)2],

b1 = −2

9
g(t)[−3f

′′

(x) + 4λf
′

(x)2g(t)], b2 = −2

3
f

′

(x)2g(t)2.
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Using the same procedure as Result 1, we have,











































































































u21 =
−3f

′′
(x) + 4λf

′
(x)2g(t)

3
√
3f ′(x)

− f(x)g
′
(t)

B(t)f ′(x)g(t)

+
2f

′
(x)g(t){−λ

2
+

|λ|
2
[C2cosh(

|λ|
2
fg)+C1sinh(

|λ|
2
fg)]

C1cosh(
|λ|
2
fg)+C2sinh(

|λ|
2
fg)

}
√
3

,

v21 =
1

27f ′(x)2
[9f

′′

(x)2 − 9f
′′

(x)f
′

(x)− 27f
′

(x)2 + 3λf
′′

(x)f
′

(x)2g(t)

+7λ2f
′

(x)4g(t)2]− 2

9
g(t)[−3f

′′

(x) + 4λf
′

(x)2g(t)]

{−λ

2
+

|λ|
2
[C2cosh(

|λ|
2
fg) + C1sinh(

|λ|
2
fg)]

C1cosh(
|λ|
2
fg) + C2sinh(

|λ|
2
fg)

}

−2

3
f

′

(x)2g(t)2{−λ

2
+

|λ|
2
[C1cosh(

|λ|
2
fg) + C2sinh(

|λ|
2
fg)]

C1cosh(
|λ|
2
fg) + C2sinh(

|λ|
2
fg)

}2;











































u22 =
2[ C2

C1+C2f(x)g(t)
]f

′
(x)g(t)

√
3

+
−3f

′′
(x)

3
√
3f ′(x)

− f(x)g
′
(t)

B(t)f ′(x)g(t)
,

v22 = −2

3
[

C2

C1 + C2f(x)g(t)
]2f

′

(x)2g(t)2 +
2

3
[

f
′′
(x)C2g(t)

C1 + C2f(x)g(t)
]

+
1

27f ′(x)2
[9f

′′

(x)2 − 9f
′′

(x)f
′

(x)− 27f
′

(x)2]2.

Type IV: Substituting µ = 1, λ = 0 into Eq. (4.4), we have:
Case 1:

a0 = − f(x)g
′
(t)

B(t)g(t)f ′(x)
+

f
′′
(x)√

3f ′(x)
, a1 = −2g(t)f

′
(x)√

3
,

b0 =
−3f

′
(x)2 − 2g(t)2f

′
(x)4 + f

′′
(x)2 − f

′
(x)f (3)(x)

3f ′(x)2
,

b1 =
2

3
g(t)f

′′

(x), b2 = −2

3
g(t)2f

′

(x)2.

In this condition, λ2−4µ = −4 < 0, we can obtain the NTWS for trigonometric
functions:










































u11 = −2g(t)[C1cos(fg)− C1sin(fg)]f
′
(x)√

3[C1cos(fg) + C2sin(fg)]
− f(x)g

′
(t)

B(t)g(t)f ′(x)
+

f
′′
(x)√

3f ′(x)
,

v11 = −2g(t)2[C2cos(fg)− C1sin(fg)]
2f

′
(x)2

3[C1cos(fg) + C2sin(fg)]2
+

2g(t)[C2cos(fg)− C2sin(fg)]f
′′
(x)

3[C1cos(fg) + C2sin(fg)]

+
−3f

′
(x)2 − 2g(t)2f

′
(x)4 + f

′′
(x)2 − f

′
(x)f (3)(x)

3f ′(x)2
.
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Case 2:

a0 = − f(x)g
′
(t)

B(t)g(t)f ′(x)
− f

′′
(x)√

3f ′(x)
, a1 =

2g(t)f
′
(x)√

3
,

b0 =
−3f

′
(x)2 − 2g(t)2f

′
(x)4 + f

′′
(x)2 − f

′
(x)f (3)(x)

3f ′(x)2
,

b1 =
2

3
g(t)f

′′

(x), b2 = −2

3
g(t)2f

′

(x)2.

Since λ2 − 4µ = −4 < 0, we can obtain the NTWS for trigonometric
functions:










































u12 =
2g(t)[C1cos(fg)− C1sin(fg)]f

′
(x)√

3[C1cos(fg) + C2sin(fg)]
− f(x)g

′
(t)

B(t)g(t)f ′(x)
− f

′′
(x)√

3f ′(x)
,

v12 = −2g(t)[C2cos(fg)− C1sin(fg)]
2f

′
(x)2

3[C1cos(fg) + C2sin(fg)]2
+

2g(t)[C2cos(fg)− C2sin(fg)]f
′′
(x)

3[C1cos(fg) + C2sin(fg)]

+
−3f

′
(x)2 − 2g(t)2f

′
(x)4 + f

′′
(x)2 − f

′
(x)f (3)(x)

3f ′(x)2
.

Type V: When µ = 1, f
′′
(x) = f (3)(x), we have:

a0 = − f
′′
(x)√

3f ′(x)
+

4λf
′
(x)g(t)

3
√
3

− f(x)g
′
(t)

B(t)f ′(x)g(t)
,

a1 =
2f

′
(x)g(t)√
3

, b0 =
1

9
λf

′′

(x)g(t) +
7

27
λ2f

′

(x)2g(t)2

+[9f
′′

(x)2 − 9f
′′

(x)f
′

(x)− 27f
′

(x)2 − 18f
′

(x)4g(t)2]/[27f
′

(x)2],

b1 =
2

3
f

′′

(x)g(t)− 8

9
λf

′

(x)2g(t)2, b2 = −2

3
f

′

(x)2g(t)2.

Similarly, we have:























































































u21 =
−3f

′′
(x) + 4λf

′
(x)2g(t)

3
√
3f ′(x)

− f(x)g
′
(t)

B(t)f ′(x)g(t)

+
2f

′
(x)g(t){−λ

2
+ δ1[C2cosh(δ1fg)+C1sinh(δ1fg)]

C1cosh(δ1fg)+C2sinh(δ1fg)
}

√
3

,

v21 = [9f
′′

(x)2 − 9f
′′

(x)f
′

(x)− 27f
′

(x)2 + 3λf
′′

(x)f
′

(x)2g(t)

−18f
′

(x)4g(t)2 + 7λ2f
′

(x)4g(t)2]/[27f
′

(x)2]

−2

9
g(t)[−3f

′′

(x) + 4λf
′

(x)2g(t)]{−λ

2
+

δ2[C2cosh(δ1fg) + C1sinh(δ1fg)]

C1cosh(δ1fg) + C2sinh(δ1fg)
}

−2

3
f

′

(x)2g(t)2{−λ

2
+

δ2[C2cosh(δ1fg) + C1sinh(δ1fg)]

C1cosh(δ1fg) + C2sinh(δ1fg)
}2;
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

















































































u22 =
−3f

′′
(x) + 4λf

′
(x)2g(t)

3
√
3f ′(x)

− f(x)g
′
(t)

B(t)f ′(x)g(t)

+
2f

′
(x)g(t){−λ

2
+ δ2[C2cos(δ2fg)−C1sin(δ2fg)]

C1cos(δ2fg)+C2sin(δ2fg)
}

√
3

,

v22 = [9f
′′

(x)2 − 9f
′′

(x)f
′

(x)− 27f
′

(x)2 + 3λf
′′

(x)f
′

(x)2g(t)

−18f
′

(x)4g(t)2 + 7λ2f
′

(x)4g(t)2]/[27f
′

(x)2]

−2

9
g(t)[−3f

′′

(x) + 4λf
′

(x)2g(t)]{−λ

2
+

δ2[C2cos(δ2fg)− C1sin(δ2fg)]

C1cos(δ2fg) + C2sin(δ2fg)
}

−2

3
f

′

(x)2g(t)2{−λ

2
+ δ2

[C2cos(δ2fg)− C1sin(δ2fg)]

C1cos(δ2fg) + C2sin(δ2fg)
}2;

When λ = ±2,
(i)λ = 2:































































u23 =
2[−1 + C2

C1+C2f(x)g(t)
]f

′
(x)g(t)

√
3

+
−3f

′′
(x) + 8f

′
(x)2g(t)

3
√
3f ′(x)

− f(x)g
′
(t)

B(t)f ′(x)g(t)
,

v23 = −2

3
[−1 +

C2

C1 + C2f(x)g(t)
]2f

′

(x)2g(t)2

−2

9
[−1 +

C2

C1 + C2f(x)g(t)
]g(t)[−3f

′′

(x) + 8f
′

(x)2g(t)]

+[9f
′′

(x)2 − 9f
′′

(x)f
′

(x)− 27f
′

(x)2

+6f
′′

(x)f
′

(x)2g(t) + 10f
′

(x)4g(t)2]/[27f
′

(x)2];

(ii)λ = −2:































































u24 =
2[1 + C2

C1+C2f(x)g(t)
]f

′
(x)g(t)

√
3

+
−3f

′′
(x)− 8f

′
(x)2g(t)

3
√
3f ′(x)

− f(x)g
′
(t)

B(t)f ′(x)g(t)
,

v24 = −2

3
[1 +

C2

C1 + C2f(x)g(t)
]2f

′

(x)2g(t)2

−2

9
[1 +

C2

C1 + C2f(x)g(t)
]g(t)[−3f

′′

(x)− 8f
′

(x)2g(t)]

+[9f
′′

(x)2 − 9f
′′

(x)f
′

(x)− 27f
′

(x)2

−6f
′′

(x)f
′

(x)2g(t) + 10f
′

(x)4g(t)2]/[27f
′

(x)2]

4.2 ξ(x, t) = f(x) + g(t)

We can assume that (1.1) has the solution in the form of NTWS:

ξ(x, t) = f(x) + g(t), (4.5)

where f(x) and g(t) are arbitrary functions of the indicated variables.
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Therefore the general solutions of Eq. (2.4) are as follows:

G
′
(ξ)

G(ξ)
=























−λ
2
+ δ1

C1sinh(δ1(f+g))+C2cosh(δ1(f+g))

C1cosh(δ1(f+g))+C2sinh(δ1(f+g))
, λ2 − 4µ > 0,

−λ
2
+ δ2

−C1sin(δ2(f+g))+C2cos(δ2(f+g))

C1cos(δ2(f+g))+C2sin(δ2(f+g))
, λ2 − 4µ < 0,

−λ
2
+ C2

C1+C2f(η)
, λ2 − 4µ = 0.

where δ1 =

√
λ2−4µ

2
, δ2 =

√
4µ−λ2

2
, C1, C2 are arbitrary constants.

Substituting (4.5), (2.3) into equations (1.1), we have (Eqs.(4.6)):

−b1g
′

(t)µ− a1f
′

(x)µB(t)− a1b0f
′

(x)µB(t)− a0b1f(x)µB(t)

+
1

3
a1f

′′

(x)λµB(t)− 1

3
a1f(x)

2λ2µB(t)− 2

3
a1f

′

(x)2µ2B(t) = 0,

−3a1b2f(x)B(t)− 2a1f
′

(x)2B(t) = 0,

−2b2g
′

(t)− 2a1b1f(x)B(t)− 2a0b2f(x)B(t) +
2

3
a1f

′′

(x)B(t)

−3a1b2f
′

(x)λB(t)− 4a1f
′

(x)2λB(t) = 0,

−2b2g
′

(t)− 2a1b1f
′

(x)B(t)− 2a0b2f
′

(x)B(t) +
2

3
a1f

′′

(x)B(t)

−3a1b2f
′

(x)λB(t)− 4a1f
′

(x)2λB(t) = 0,

−b1g
′

(t)λ− 2b2g
′

(t)µ− a1f
′

(x)λB(t)− a1b0f
′

(x)λB(t)

−a0b1f
′

(x)λB(t) +
1

3
a1f

′′

(x)λ2B(t)− 1

3
a1f

′

(x)2λ3B(t)− 2a1b1f
′

(x)µB(t)

−2a0b2f
′

(x)µB(t) +
2

3
a1f

′′

(x)µB(t)− 8

3
a1f

′

(x)2λµB(t) = 0,

−a1g
′

(t)µ− a0a1f
′

(x)µB(t)− b1f
′

(x)µB(t) = 0,

−a1
2f

′

(x)B(t)− 2b2f
′

(x)B(t) = 0,

−a1g
′

(t)− a0a1f
′

(x)B(t)− b1f
′

(x)B(t)− a1
2f

′

(x)λB(t)

−2b2f
′

(x)λB(t) = 0,

−a1g
′

(t)λ−a0a1f
′

(x)λB(t)−b1f
′

(x)λB(t)−a1
2f

′

(x)µB(t)−2b2f
′

(x)µB(t) = 0.

Eqs.(4.6) have solutions if and only if it satisfies the following:

−λ[
8B(t)f

′
(x)3

√

3f(x)
− 4B(t)f

′
(x)4√

3f(x)3/2
] =

4f
′
(x)2g

′
(t)

3f(x)
− 4B(t)f

′
(x)f

′′
(x)

3
√
3
√

f(x)

λ2[−2f(x)3/2f
′
(x)

3
√
3

+
2f

′
(x)3

3
√
3
√

f(x)
] + µ[− 4f

′
(x)3

√
3
√

f(x)
+

4f
′
(x)4√

3f(x)3/2
] = 0,
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which is:

2λB(t)f
′
(x)2√

3
+

λB(t)f
′
(x)3√

3f(x)
− f

′
(x)g

′
(t)

3f(x)
+

B(t)f
′′
(x)

3
√
3
√

f(x)
= 0, (∗)

λ2[−f(x)2

3
+

f
′
(x)2

3
] + µ[−2f

′

(x)2 +
2f

′
(x)3

f(x)
] = 0, (∗∗)

In order to make sure g
′
(t) and B(t) must be only for t, the ratios of the B(t),

g
′
(t) must be functions of t.

B(t)

g′(t)
[6λf

′

(x)f(x) + 3λf
′

(x)3 + f
′

(x)] =
√
3f

′

(x)

That’s to say, the following constrained conditions are satisfied:

6λf
′

(x)f(x) + 3λf
′

(x)2 + 1 = C

Hereby we get, B(t) =
√
3

C
g

′
(t).

Substituting B(t) into Eq.(**), we have three different solutions:

f(x) = C3e
x, f(x) = e

x(−λ2−λ
√

λ2−24µ)
12µ C3, f(x) = e

x(−λ2+λ
√

λ2−24µ)
12µ C3.

(1) Substituting f(x) = e
x(−λ2−λ

√
λ2−24µ)

12µ C3, f(x) = e
x(−λ2+λ

√
λ2−24µ)

12µ C3 into the
Eq.(4.6), we yield b2 = 0, which is not valid according to the constraints above.
(2) Substituting f(x) = C3e

x into the equations(4.6), we get:

9λC3
2e2x + 1 = C.

The equation is tenable only if λ = 0. Therefore,

g
′

(t) =

√
3

3
B(t).

Solving the Eq.(4.6), we can derive the following result:
Case 1:

a0 =
e−x(

√
3
√
Cex/2 − 3

√
3)

9C
, a1 = −2

√
Cex/2√
3

,

b0 =
−27C + e−x − 18C2exµ

27C
, b1 =

2

9
, b2 = −2Cex

3
.
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we can obtain the following solutions:































































u11 = −
2
√
Cex/2{

√
µ[C2cos(

√
µ(f+g))−C1sin(

√
µ(f+g))]

C1cos(
√
µ(f+g))+C2sin(

√
µ(f+g))

}
√
3

+
e−x(

√
3
√
Cex/2 − 3

√
3)

9C
,

v11 =
−27C + e−x − 18C2exµ

27C1

+
2

9
{
√
µ[C2cos(

√
µ(f + g))− C1sin(

√
µ(f + g))]

C1cos(
√
µ(f + g)) + C2sin(

√
µ(f + g))

}

−2

3
Cex{

√
µ[C2cos(

√
µ(f + g))− C1sin(

√
µ(f + g))]

C1cos(
√
µ(f + g)) + C2sin(

√
µ(f + g))

}2;







































u12 = −
2
√
Cex/2{ C2

C1+C2[f(x)+g(t)]
}

√
3

+
e−x(

√
3
√
Cex/2 − 3

√
3)

9C
,

v12 =
−27C + e−x − 18C2exµ

27C1
+

2

9
{ C2

C1 + C2[f(x) + g(t)]
}

−2

3
Cex{ C2

C1 + C2[f(x) + g(t)]
}2.

Case 2:

a0 = −e−x(
√
3
√
Cex/2 + 3

√
3)

9C
, a1 =

2
√
Cex/2√
3

,

b0 =
−27C + e−x − 18C2exµ

27C
, b1 =

2

9
, b2 = −2Cex

3
.

Similarly, we have



























































u21 =
2
√
Cex/2{

√
µ[C2cos(

√
µ(f+g))−C1sin(

√
µ(f+g))]

C1cos(
√
µ(f+g))+C2sin(

√
µ(f+g))

}
√
3

+
e−x(

√
3
√
Cex/2 + 3

√
3)

9C
,

v21 =
−27C + e−x − 18C2exµ

27C1
+

2

9
{
√
µ[C2cos(

√
µ(f + g))− C1sin(

√
µ(f + g))]

C1cos(
√
µ(f + g)) + C2sin(

√
µ(f + g))

}

−2
3
Cex{

√
µ[C2cos(

√
µ(f+g))−C1sin(

√
µ(f+g))]

C1cos(
√
µ(f+g))+C2sin(

√
µ(f+g))

}2







































u22 =
2
√
Cex/2{ C2

C1+C2[f(x)+g(t)]
}

√
3

− e−x(
√
3
√
Cex/2 + 3

√
3)

9C
,

v22 =
−27C + e−x − 18C2exµ

27C1
+

2

9
{ C2

C1 + C2[f(x) + g(t)]
}

−2

3
Cex{ C2

C1 + C2[f(x) + g(t)]
}2.
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5 Conclusion

With (G
′
/G)-expansion method, we have successfully constructed three types

of traveling wave solutions in terms of hyperbolic, trigometric, and rational
functions for the (1+1)-dimensional Boussinesq equations with variable coeffi-
cients. Moreover, the non-traveling wave solutions in variable separation form
are also successfully established. Especially, the solutions in variable sepa-
ration form we constructed have many potential applications in physics and
engineering. These methods can also be applied in obtaining exact solutions
of other kinds of equations.
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