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Abstract

The aim of this paper is to study a problem of existence and stability

related to a tumor growth mathematical model. Based on a classical

mathematical model for tumor growth describing proliferating, quies-

cent and necrotic cells, we propose to calculate explicitly the stationary

solution and discuss the stability with respect to these three cells. Some

open problems are presented in the conclusion.
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1 Introduction

The cancer modeling represents a complex multi step phenomenon and remains
highly discussed in the literature. To study the tumor evolution, different PDE
models have been presented and developed in the literature [1, 2, 3, 4, 5]. The
growth of tumors can be represented by three basic stages (avascular, vascular
and metastasis) and its modeling depends on these stages considered. The
avascular stage, which can also be studied using both discrete or continuum
models [7], is characterized by a limited diffusion in the sense that nutrient
diffusion is not sufficient to assure the development of the tumor. In order
to grow, an angiogenesis process is added to the system considered implying
blood vessel formation (vascular stage) [6]. Finally, the metastasis stage is well
known to be difficult to treat and is characterized by a propagation of tumor
cells in different parts of the body. Basically, these different models are based
on mass conservation laws and reaction diffusion processes.
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In this work, we consider a mixed continuous avascular model, including
proliferating and quiescent cells (the living cells) and necrotic cells (dead cells),
denoted respectively by P,Q and D. These different densities are depending
on a nutrient concentration C satisfying a diffusion equation. On the other
part, the densities P, Q and D are time depending and are governing by rate
coefficients denoted Kij such that KPP represents the rate of cell birth, KPD

is the death rate of proliferating cells, KPQ the rate at which proliferating cells
become quiescent and KQP describes the transformation of Q to P, and KQD

is the rate death of quiescent cells. Finally, the dead cells are removed outside
the tumor domain Ω and this mechanism is governed by a rate coefficient k > 0
independent of the nutrient C. More precisely, the general trend of this depen-
dence verifies the fact that KPP , KQP increase when the nutrient concentration
C increases, and KPD,KQD,KPQ decrease when the nutrient concentration C

increases. The originality of this work, is that we have supposed a linear de-
pendance of these coefficients Kij with respect to the densities P,Q,D and
we have studied the existence and discussed the stability of a solution derived
from the new system obtained.

This paper is organized as follows: in section 2, we review a classical math-
ematical formulation of tumor growth describing proliferating, quiescent and
necrotic cells. We propose in section 3, a reformulation of the tumor growth
model by considering a linear relation relying the rate coefficients Kij and the
densities P,Q,D. Some results concerning the existence and the stability of
the stationary solution are also given in this section. Finally, we conclude in
section 4 by recalling the main results and giving some open issues.

2 Preliminary Notes

By assuming that the total density of cells in the tumor is constant and that
all the cells have the same size and density, we have

P +Q+D = constant = N.

The mathematical modeling of the three population cells is formulated by

∂P

∂t
+ div(Pv) =

(KPP (C)−KPQ(C)−KPD(C))P +KQP (C)Q, (1)

∂Q

∂t
+ div(Qv) =

KPQ(C)P − (KQP (C) +KQD(C))Q, (2)

∂D

∂t
+ div(Dv) =
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KPD(C)P +KQD(C)Q− kD, (3)

with v the velocity of cell movements.
By scaling the densities p = P

N
, q = Q

N
and d = D

N
, the value 1 corresponds

to a completely close packed population. We obtain for x ∈ Ω(t), t > 0

∂p

∂t
+ div(pv) =

(Kpp(c)−Kpq(c)−Kpd(c))p+Kqp(c)q, (4)

∂q

∂t
+ div(qv) =

Kpq(c)p− (Kqp(c) +Kqd(c))q, (5)

∂d

∂t
+ div(dv) =

Kpd(c)p+Kqd(c)q − kd, (6)

with c = C
C0

, where C0 is the nutrient value at the tumor surface.

Proposition 2.1 For t > 0, we have the equivalence

p+ q + d = 1 ⇐⇒ div(v) = Kpp(c)p− kd,

with the initial condition
p0 + q0 + d0 = 1.

Proof 2.2 Using the equations (4), (5) and (6), we obtain the relation

div(v) = Kpp(c)− kd, Ω(t), t > 0. (7)

Conversely, using the equations (1), (2) and (3) with equal motility for the
three different cells, we deduce that

∂

∂t
(P + Q+D) + v∇(P +Q+D) + (P +Q+D)div(v) =

KPPP − kD.

From equation (7), we deduce the following relation

∂

∂t
(P +Q+D) + v∇(P +Q +D) =

1

N
(KPP −KD)(N − (P +Q +D)),

yields to the equation
p+ q + d = 1.
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3 Main Results

We propose in this section to modify the system describing the different pop-
ulation cells. In fact, our idea is the following First, we assume that there
is no dependance of both Kpp and Kpd with effects in relation with the sys-
tem in p, q and d. In conclusion, we can suppose that these two coefficients
are depending only of c. Second, we assume that Kpq has a linear depen-
dence with p and that Kqp has a linear dependence with q. Finally, Kqd

depends of both p and q, then we can assume that there exists a linear de-
pendence related Kqd to p + q. We deduce that there exists kij > 0 such that
Kpp = kpp, Kpd = kpd, Kpq = kpqp,Kqp = kqpq, and Kqd = kqd(p + q) which
gives the following system

∂p

∂t
+ div(pv) = (kpp − kpqp− kpd)p+ kqpq

2, (8)

∂q

∂t
+ div(qv) = kpqp

2 − (kqpq + kqd(p+ q))q, (9)

∂d

∂t
+ div(dv) = kpdp+ kqdpq + kqdq

2 − kd. (10)

Proposition 3.1 Under previous assumptions, and by supposing that the
natural cells which will be removed out of the proposed process, corresponding to
a natural death is neglected, then the system (8-10) has exactly two stationary
solutions.

Proof 3.2 As

0 = kppp− kpqp
2 + kqpq

2, (11)

0 = kpqp
2 − kqpq

2 − kqdpq − kqdq
2, (12)

0 = kqdpq + kqdq
2 − kd, (13)

then, we obtain
kppp− kd = 0.

By assuming that p, q, d 6= 0, we have

d =
kppp

k
. (14)

Using the equation (13) and the relation (14), we deduce the following equation

kqdpq + kqdq
2 − kppp = 0,

implying that

p =
kqdq

2

kpp − kqdq
. (15)
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Finally using equation (11), we obtain

kppkqdq
2

kpp − kqdq
− kpq

(

kqdq
2

kpp − kqdq

)2

+ kqpq
2 = 0,

which gives a fourth order equation in q defined by

(

k2

qd (kqp − kpq)
)

q4 − (kpp( k
2

qd + 2kqdkqp )) q
3+

(

k2

pp (kqp + kqd)
)

q2 = 0.

As q 6= 0 then
(

k2

qd (kqp − kpq)
)

q2−

(kpp( k
2

qd + 2kqdkqp )) q +
(

k2

pp (kqp + kqd)
)

= 0. (16)

Solving the equation (16) which possesses a positive discriminant given by

k2

qdk
2

pp

(

4kqdkpq + 4kpqkqp + k2

qd

)

(17)

we obtain the two solutions

q1 =
kpp (kqd + 2kqp) + kpp

√

4kpq (kqd + kqp) + k2

qd

2kqd (kqp − kpq)
(18)

q2 =
kpp (kqd + 2kqp)− kpp

√

4kpq (kqd + kqp) + k2

qd

2kqd (kqp − kpq)
. (19)

Let us deduce the following properties of the solutions q1 and q2.
If kqp < kpq then the solution q1 is rejected, which explain that necessary the

rate at which proliferating cells become quiescent is strictly less than the rate
at which cells return to the proliferative state from the quiescent one. Then,
in the following, we suppose that kpq < kqp. On the other part, as all the rate
coefficients are strictly positive, then we have

kpq < kqp =⇒ (kqp − kpq)(kqp + kqd) > 0,

=⇒ kqp(kqp − kpq) + kqd(kqp − kpq) > 0,

=⇒ k2

qp + kqpkqd − kpqkqd − kpqkqp > 0,

=⇒ (kqd + 2kqp)
2 > 4kpq(kqd + kqp) + k2

qd,

assuring that that solution q2 is well defined. Finally, using the relation (11) we
deduce that p >

kpp
kpq

. The explicit expressions of p1, p2, are then easily deduced

form (15).
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Let us remark that for f, g, h defined by

f(p, q, d) = kppp− kpqp
2 + kqpq

2,

g(p, q, d) = kpqp
2 − kqpq

2 − kqdpq − kqdq
2,

h(p, q, d) = kqdpq + kqdq
2 − kd,

the Jacobian matrix at (0, 0, 0) is given by

J =







kpp 0 0
0 0 0
0 0 −k







yields to a non stability.
Now, let us study the conditions under which we have an uniqueness of the

stationary solution. First, the equation (17) assumes that kpp = 0 or kqd = 0.
Using the equations (11-13), we deduce that if q 6= 0 then the case kpp = 0

implies trivially that kqd = 0 and d = 0. This case is equivalent to the particular
model given in [3], in which the author have supposed that the rate k is very
large so that dead cells are instantly removed, and then we have p+ q = 1.

By taking p + q = 1 we obtain the following second order equation in p

(kpq − kqp) p
2 + 2kqpp− kqp = 0,

and then by adding the conditions kqp 6= 0 and kqp = kpq we obtain the unique
stationary solution p = q = 1

2
, otherwise (if kpq 6= kqp), we have the two

solutions

p1 = −
1

kpq − kqp

(

kqp −
√

kpqkqp
)

,

p2 = −
1

kpq − kqp

(

kqp +
√

kpqkqp
)

.

In this case, the Jacobian matrix associated to the functions f, g, h is given by

J =







0 kpq 0
kpq −kpq 0
0 0 −k







and then admits an eigenvalue which vanishes, implying an unstable state.
Conversely, if kqd = 0 then kpp = 0 and d = 0, giving the same result as

previously.
Now, by supposing that all cells are proliferating as the model proposed

by [3], giving the solution p = 1, we obtain an unstable state too, because the
eigenvalues of the Jacobian matrix associated to f, g, h are −k and 0.



A simplified tumor growth model 495

In the model developed in this section, we have neglected the rate kpd.

More generally, if we suppose that this rate does not vanish, then the Jacobian
matrix associated to f, g, h is given by

J =







−kpd kpq 0
kpq −kpq 0
kpd 0 −k





 .

It is easy to see that it suffices to take kpq < kpd to assure the stability.
To conclude, a model of tumor growth has been investigated in this work.

More precisely, we have presented a partial differential equations model giving
the evolution of proliferating, quiescent and necrotic cells, and have proposed
and discussed the existence and the stability of a stationary solution. Some
attention should be devoted to the nutrient concentration, which does not
considered in this work. In fact, in [8, 9], J.P Ward et al. have explained
how the nutrient concentration is consumed with a rate proportional to the
proliferating and quiescent cells. This proportionality will naturally effect
the solution and will change the behavior of the evolution of proliferating
and quiescent curves. On the other part, it is interested too, to view the
impact of Random effect on the PDE solution if a white noise is added to the
nutrient concentration. We propose to discuss these two points of view in a
forthcoming paper. We have supposed in the present work that all cells have
the same velocity. For real life applications, this point should be generalized
by considering different velocities. Another mathematical challenge generally
noted is that the size of the tumor is naturally changing over the time, implying
a tumor domain depending on the time. This natural property of the tumor
evolution gives a free boundary problem and we intend to apply topological
optimization which will be a good alternative to determine the geometry of
the tumor and make numerical simulations with a low cost computation.
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