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Abstract

We examine the exponentially improved asymptotic expansion of
the Lerch zeta function L(λ, a, s) =

∑∞
n=0 exp(2πniλ)/(n+a)s for large

complex values of a, with λ and s regarded as parameters. It is shown
that an infinite number of subdominant exponential terms switch on
across the Stokes lines arg a = ±1

2π. In addition, it is found that the
transition across the upper and lower imaginary a-axes is associated, in
general, with unequal scales. Numerical calculations are presented to
confirm the theoretical predictions.
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1. Introduction

A principal result of asymptotic analysis in the last quarter century has been
the interpretation of the Stokes phenomenon as the smooth appearance of an
exponentially small term in compound asymptotic expansions across certain
rays in the complex plane known as Stokes lines. For a wide class of functions,
particularly those satisfying second-order ordinary differential equations, the
functional form of the coefficient multiplying such a subdominant exponential
(a Stokes multiplier) is found to possess a universal structure represented to
leading order by an error function, whose argument is an appropriate variable
describing the transition across the Stokes line [2].

A function not satisfying a differential equation and which does not share
this simple property is the logarithm of the gamma function. In [13], Paris and
Wood obtained the exponentially improved expansion of log Γ(z) and showed
that it involved not one but an infinite number of subdominant exponentials
e±2πikz (k = 1, 2, . . .). These exponentials are maximally subdominant on the
Stokes lines arg z = ±1

2
π, respectively, and steadily grow in magnitude in
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| arg z| > 1
2
π to eventually combine to generate the poles of log Γ(z) on the

negative z-axis. These authors demonstrated that the Stokes multipliers as-
sociated with the leading exponentials (corresponding to k = 1) undergo a
smooth transition approximately described by an error function in the neigh-
bourhood of arg z = ±1

2
π. Subsequently, Berry [3] showed, by a sequence

of increasingly delicate subtractions of optimally truncated asymptotic series,
that all the subdominant exponentials switch on smoothly across the Stokes
lines with the multiplier given approximately by

1
2
± 1

2
erf [(θ ∓ 1

2
π)

√

πk|z| ], (k = 1, 2, . . .) (1.1)

in the neighbourhood of θ = arg z = ±1
2
π, respectively; see also [12, §6.4] for

a detailed summary.
An analogous refinement in the large-a asymptotics of the Hurwitz zeta

function

ζ(s, a) =
∞
∑

n=0

(n+ a)−s (ℜ(s) > 1; a 6= 0,−1,−2, . . .)

was considered in [10]. Across the Stokes lines arg a = ±1
2
π, there is a similar

appearance of an infinite number of subdominant exponentials e±2πika (k =
1, 2, . . .), each exponential being associated with its own Stokes multiplier.
For large |a|, the Stokes multipliers associated with these exponentials also
undergo a smooth, but rapid, transition in the neighbourhood of arg a = ±1

2
π

given approximately by (1.1) with z replaced by a.
In [11], the periodic zeta function F (λ, s), given by [9, §25.13]

F (λ, s) =
∞
∑

n=1

e2πniλ

ns
(ℜ(s) > 0, 0 < λ < 1; ℜ(s) > 1, λ ∈ N), (1.2)

was discussed for complex values of the parameter λ in the upper half-plane
0 < arg λ < π. This function can be expressed in terms of the Hurwitz
zeta function and, accordingly, its exponentially improved large-λ expansion
also consists of an infinite number of subdominant exponentials e2πikλ (k =
±1,±2, . . .). In the neighbourhood of the positive imaginary λ-axis, it is found
that the exponentials with k ≥ 1 undergo a double Stokes phenomenon, since
constituent parts of F (λ, s) are associated with two parallel Stokes lines at
unit distance apart.

In this paper we consider the Lerch zeta function defined for ℜ(s) > 1,
0 < λ ≤ 1 and complex a by the series [9, Eq. (25.14.1)]

L(λ, a, s) :=
∞
∑

n=0

e2πniλ

(n + a)s
(a 6= 0,−1,−2, . . .) (1.3)
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and elsewhere by analytic continuation. When λ = 1, the Lerch function
reduces to ζ(s, a) and when a = 1 we have

L(λ, 1, s) = e−2πiλF (λ, s). (1.4)

We shall find in the large-a asymptotics of L(λ, a, s) that there is a similar
appearance of an infinite number of subdominant exponential terms in the
neighbourhood of the Stokes lines arg a = ±1

2
π. Each of these exponentials

is associated with its own Stokes multiplier, which undergoes a smooth, but
rapid, transition in the vicinity of these rays. However, unlike the situation
present with ζ(s, a), it will be found that the transition across the Stokes lines
in the upper and lower half-planes is, in general, associated with unequal scales.

We use a Mellin-Barnes integral definition of L(λ, a, s) to first determine
its large-a Poincaré expansion and then its exponentially improved expansion
as |a| → ∞ in the sector | arg a| < π. The procedure we adopt is similar to
that employed in [10, 13].

2. The large-a asymptotic expansion of L(λ, a, s)

2.1. An integral representation

Let a and s be complex variables with | arg a| < π and λ a real variable
satisfying 0 < λ ≤ 1. When ℜ(s) > 1, we can write the Lerch zeta function
defined in (1.3) as

L(λ, a, s) = a−s + a−s
∞
∑

n=1

e2πiλ
(

1 +
n

a

)−s

.

Making use of the representation (see, for example, [12, p. 91])

Γ(s)

(1 + x)s
=

1

2πi

∫ c+∞i

c−∞i
Γ(u)Γ(s− u)x−udu (| arg x| < π),

where1 1 < c < ℜ(s), we obtain after an interchange in the order of summation
and integration

L(λ, a, s) = a−s +
a−s

2πiΓ(s)

∫ c+∞i

c−∞i
Γ(u)Γ(s− u)F (λ, u) audu, (2.1)

where F (λ, u) is the periodic zeta function defined in (1.2). When λ = 1,
F (1, u) becomes the Riemann zeta function ζ(u) and the representation (2.1)
reduces to that given in [10] for the Hurwitz zeta function L(1, a, s) = ζ(s, a).

1This integral representation holds for the wider c-interval given by 0 < c < ℜ(s).
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Displacement of the integration path in (2.1) to the left over the simple
pole at u = 0 (and, in the case λ = 1, at u = 1) then yields

L(λ, a, s) =
ǫ(λ)a1−s

s− 1
+ a−s{1 + F (λ, 0)}+

Z(λ, a, s)

Γ(s)
, (2.2)

where ǫ(λ) = 0 or 1 according as 0 < λ < 1 or λ = 1 and, with the change of
variable u → −u,

Z(λ, a, s) =
a−s

2πi

∫ c+∞i

c−∞i
Γ(−u)Γ(u+ s)F (λ,−u) a−udu (0 < c < 1). (2.3)

The result in (2.2) and (2.3) has been derived assuming that ℜ(s) > 1; but
this restriction can be relaxed to allow for ℜ(s) ≤ 1 by suitable indentation of
the integration path to lie to the right of all the poles of Γ(s + u) (provided
s 6= −1,−2, . . .). The representation (2.2) is similar to, but not identical with,
that given in [6].

2.2. The Poincaré asymptotic expansion

The large-a asymptotic expansion of L(λ, a, s) can be obtained by further
displacement of the integration path in (2.3) over the poles of Γ(−u) at u =
1, 2, . . . , K − 1, where K denotes an arbitrary positive integer. This yields,
when 0 < λ < 1,

L(λ, a, s) = a−s +
K−1
∑

k=0

(−)k

k!
(s)kF (λ,−k) a−s−k +RK(λ, a, s), (2.4)

where (a)k = Γ(a + k)/Γ(a) is Pochhammer’s symbol. In Appendix A it is
shown that the remainder RK(λ, a, s) = O(a−s−K) as |a| → ∞ in | arg a| < π.
This expansion agrees with that given by Ferreira and López [5, Thm 1], who
expressed their coefficients in terms of the polylogarithm function Li−n(e

2πiλ) =
F (λ,−n).

In [1], it is shown that F (λ,−k) is expressible in terms of a certain kind of
generalised Bernoulli polynomials B̃n(α, β) defined by the generating function

teαt

1− βet
=

∞
∑

n=0

B̃n(α, β)

n!
tn

in a neighbourhood of t = 0. From (1.4) and [1, p. 164], we have for non-
negative integer values of k

F (λ,−k) = e2πiλL(λ, 1,−k) =
e2πiλ

k + 1
B̃k+1(1, e

2πiλ), (2.5)

where B̃n(1, x) may be expressed in the form

B̃n(1, x) =
nPn(x)

(1− x)n
, (2.6)
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with P1(x) = 1 and for n ≥ 2 the Pn(x) are polynomials of degree n−2. From
[1, Eq. (3.7)], we have that

Pn(x) =
n−1
∑

r=1

r!S
(r)
n−1 x

r−1(1− x)n−r−1 (n ≥ 2)

where S(r)
n are the Stirling numbers of the second kind. The first few Pn(x)

are consequently:

P2(x) = 1, P3(x) = 1 + x, P4(x) = 1 + 4x+ x2,

P5(x) = 1 + 11x+ 11x2 + x3, P6(x) = 1 + 26x+ 66x2 + 26x3 + x4,

P7(x) = 1 + 57x+ 302x2 + 302x3 + 57x4 + x5,

P8(x) = 1 + 120x+ 1191x2 + 2416x3 + 1191x4 + 120x5 + x6, . . . .

Then we have the expansion given in the following theorem.

Theorem 1. Let s ( 6= 0,−1− 2, . . .) be a complex variable and K be an arbi-
trary positive integer. Then, when 0 < λ < 1, we have

L(λ, a, s) =
a−s

1− e2πiλ
+e2πiλ

K−1
∑

k=1

(−)k(s)k
k!

Pk+1(e
2πiλ) a−s−k

(1− e2πiλ)k+1
+O(a−s−K) (2.7)

as |a| → ∞ in the sector | arg a| < π.

It is worth remarking that the first few coefficients of the expansion (2.7)
can be expressed in an alternative trigonometric form to yield

L(λ, a, s)

∼
a−s

2 sin πλ

{

ie−πiλ+
s

2a sin πλ
−
is(s + 1) cosπλ

4a2 sin2πλ
−
s(s + 1)(s+ 2)(1 + 2 cos2πλ)

23a3 sin3πλ

+
is(s+ 1)(s+ 2)(s+ 3)(2 + cos2πλ) cosπλ

48a4 sin4πλ
+ · · ·

}

.

When λ = 1, we have F (λ,−k) = ζ(−k) in (2.4). Then, from (2.2) and the
fact that ζ(0) = −1

2
, ζ(−2k) = 0 and ζ(−2k + 1) = −B2k/(2k) (k = 1, 2, . . .),

where B2k denote the even-order Bernoulli numbers, we recover the well-known
asymptotic expansion [7, p. 25]

L(1, a, s) ≡ ζ(s, a) ∼
1

2
a−s +

a1−s

s− 1
+

1

Γ(s)

∞
∑

k=1

B2k

(2k)!

Γ(2k + s− 1)

a2k+s−1

valid as |a| → ∞ in | arg a| < π.
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3. The exponentially improved expansion of L(λ, a, s)

Let 0 < λ ≤ 1 and define λ′ := 1 − λ. To determine the exponentially
improved expansion of L(λ, a, s) for large |a| in | arg a| < π and, in particular,
the behaviour in the neighbourhood of the rays arg a = ±1

2
π, we start with

the representation in (2.2), namely

L(λ, a, s) =
ǫ(λ)a1−s

s− 1
+ a−s{1 + F (λ, 0)}+

Z(λ, a, s)

Γ(s)
, (3.1)

where from (2.5) and (2.6), we have F (λ, 0) = e2πiλ/(1−e2πiλ) when 0 < λ < 1
and F (1, 0) = −1

2
. The function Z(λ, a, s) is defined by the integral in (2.3).

3.1. An expansion for Z(λ, a, s)

The functional equation for the periodic zeta function F (λ, s) can be obtained
from the analogous result for L(λ, a, s) given in [4, pp. 26, 29] and takes the
form

F (λ, s) =
Γ(1− s)

(2π)s

{

e
1

2
πi(1−s)

∞
∑

k=0

(k + λ)s−1 + e−
1

2
πi(1−s)

∞
∑

k=0

′(k + λ′)s−1
}

(3.2)

for ℜ(s) < 0, where the prime on the second summation sign indicates that
the term corresponding to k = 0 is to be omitted if λ = 1. Substitution of this
last result into (2.3) yields

Z(λ, a, s) =
a−s

2πi

∫ c+∞i

c−∞i
Γ(−u)Γ(u+ s)F (λ,−u) a−udu

= −
a−s

4π

∫ c+∞i

c−∞i

Γ(u+ s)

sin πu
(2πa)−u

×
{

e
1

2
πiu

∞
∑

k=0

(k + λ)−1−u − e−
1

2
πiu

∞
∑

k=0

′(k + λ′)−1−u
}

du,

where 0 < c < 1.
We define the sum

E(λ, s; z) :=
∞
∑

k=0

(k + λ)s−1Jk(λ, s; z), (3.3)

where

Jk(λ, s; z) :=
1

4π

∫ c+∞i

c−∞i

Γ(u+ s)

sin πu
z−u−sdu (0 < c < 1, | arg z| < 3

2
π).

(3.4)
Then we obtain

Z(λ, a, s) = (2π)s{e
1

2
πisE(λ′, s; iX ′)− e−

1

2
πisE(λ, s;−iX)}, (3.5)
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where
X := 2πa(k + λ), X ′ := 2πa(k + λ′) (3.6)

and in the sum E(λ′, s; iX ′) the term corresponding to k = 0 is understood to
be omitted if λ = 1.

We now displace the (possibly indented when ℜ(s) ≤ 0) integration path for
Jk(λ, s;−iX) in (3.4) to the right over the poles situated at u = 1, 2, . . . , Nk−1,
where the {Nk} (k ≥ 1) denote (for the moment) an arbitrary set of positive
integers. This produces

Jk(λ, s;−iX) =
1

2πi

Nk−1
∑

r=1

(−)rΓ(r + s)(−iX)−r−s +Rk(λ, a;Nk), (3.7)

where the remainder term is given by

Rk(λ, a;Nk) =
1

4π

∫ −c′+Nk+∞i

−c′+Nk−∞i

Γ(u+ s)

sin πu
(−iX)−u−sdu

=
(−)Nk

4π

∫ −c′+∞i

−c′−∞i

Γ(u+ νk)

sin πu
(−iX)−u−νkdu, (3.8)

with 0 < c′ < 1. In the last integral, we have replaced the integration variable
u by u+Nk and have set

νk := Nk + s.

It is also tacitly assumed that ℜ(νk) − c′ > 0 so that the integration path in
Rk(λ, a;Nk) is not indented when ℜ(s) ≤ 0.

The integrals in (3.8) can be identified in terms of the so-called terminant
function (see [9, p. 67]), which is a multiple of the incomplete gamma function
Γ(a, z) (or, equivalently, the exponential integral). Following the notation
employed in [12, p. 243], we denote the terminant function by Tν(z), where

Tν(z) = eπiν
Γ(ν)

2πi
Γ(1− ν, z)

=
e−z

4π

∫ −c+∞i

−c−∞i

Γ(u+ ν)

sin πu
z−u−νdu (| arg z| < 3

2
π), (3.9)

where 0 < c < 1 and, provided ν 6= 0,−1,−2, . . . , the integration path lies to
the right of all the poles of Γ(u+ ν); see [9, p. 178]. It then follows from (3.8)
that

Rk(λ, a;Nk) = e−iX−πis Tνk(−iX) (| arg a| < π). (3.10)

Proceeding in the same manner for the integral Jk(λ
′, s; iX ′), with the set of

integers {Nk} replaced by the set {N ′
k} and the parameters νk by ν ′

k := N ′
k+s,

we find

Jk(λ
′, s; iX ′) =

1

2πi

N ′

k
−1

∑

r=1

(−)rΓ(r + s)(iX ′)−r−s +R′
k(λ

′, a;N ′
k), (3.11)
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where
R′

k(λ
′, a;N ′

k) = eiX
′−πis Tν′

k
(iX ′) (| arg a| < π). (3.12)

Then, from (3.5), we finally obtain

Z(λ, a, s)

(2π)s
=

∞
∑

k=0

(k + λ)s−1
{

i

2π

Nk−1
∑

r=1

(−i)rΓ(r + s)

Xr+s
− e−

1

2
πisRk(λ, a;Nk)

}

−
∞
∑

k=0

′(k + λ′)s−1
{

i

2π

N ′

k
−1

∑

r=1

irΓ(r + s)

X ′ r+s
− e

1

2
πisR′

k(λ
′, a;N ′

k)
}

(3.13)

valid in | arg a| < π.
When λ = 1, we have X = X ′ = 2πika and Nk = N ′

k. The right-hand side
of (3.13) then reduces to

∞
∑

k=1

ks−1
{

1

π

nk−1
∑

r=0

(−)r
Γ(2r + s+ 1)

X2r+s+1
+Rk(a;nk)

}

,

where the {nk} denote an arbitrary set of positive integers and

Rk(a;nk) = e−πis{eiX+ 1

2
πisTνk(iX)− e−iX− 1

2
πisTνk(−iX)}, νk := 2nk + s

as found in [10, Eq. (2.5), (2.6)] for the Hurwitz zeta function ζ(s, a).
Assuming that Nk < Nk+1, N

′
k < N ′

k+1 (k = 0, 1, 2, . . .), we can write the
double sum involving λ in (3.13) in the form [3], [12, §6.4.3]

∞
∑

k=0

(k + λ)s−1
Nk−1
∑

r=0

(−i)rΓ(r + s)

Xr+s
=

∞
∑

k=0

Nk−1
∑

r=0

(−i)rΓ(r + s)

(2πa)r+s(k + λ)r+1

=
∞
∑

m=0

Nm−1
∑

r=Nm−1

(−i)rΓ(r + s)

(2πa)r+s
ζ(r+1, m+λ), (3.14)

where the sum over k has been evaluated in terms of the Hurwitz zeta function
and N−1 = 1; see Appendix B for details. A similar rearrangement applies to
the other double sum in (3.13) involving λ′ (with N ′

−1 = 1).
If we define

Hm(a;λ, λ
′) :=

Nm−1
∑

r=Nm−1

(−i)rΓ(r + s)

(2πa)r+s
ζ(r + 1, m+ λ)

−
N ′

m−1
∑

r=N ′

m−1

irΓ(r + s)

(2πa)r+s
ζ(r + 1, m+ λ′), (3.15)

then, from (3.1), (3.10), (3.12) and (3.13), we finally obtain
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Theorem 2. Let λ′ = 1 − λ, ǫ(λ) = 0 or 1 according as 0 < λ < 1 or λ = 1.
Let the truncation indices Nk and N ′

k be increasing sets of positive integers
with νk = Nk + s, ν ′

k = N ′
k + s. Then, for 0 < λ ≤ 1, we have the expansion

of L(λ, a, s) given by

L(λ, a, s) =
ǫ(λ)a1−s

s− 1
+a−s{1+F (λ, 0)}+

(2π)s

Γ(s)

∞
∑

m=0

′
{

i

2π
Hm(a;λ, λ

′)

−
e−

1

2
πis

(m+ λ)1−s
Rm(λ, a;Nm) +

e
1

2
πis

(m+ λ′)1−s
R′

m(λ
′, a;N ′

m)
}

(3.16)
valid in | arg a| < π, where

Rm(λ, a;Nm) = e−iX−πisTνm(−iX), R′
m(λ

′, a;N ′
m) = eiX

′−πisTν′m(iX
′)

and X, X ′ are defined in (3.6). The prime on the summation sign indicates
that the terms corresponding to m = 0 in the sums involving λ′ are to be
omitted when λ = 1.

3.2. The optimally truncated expansion and the Stokes multipliers

An important feature of (3.13) is that the Poincaré expansion in (2.7) has been
decomposed into two k-sequences of component asymptotic series with scales
2πa(k+ λ) and 2πa(k+ λ′), each associated with its own arbitrary truncation
index Nk and N ′

k and remainder terms Rk(λ, a;Nk) and R′
k(λ

′, a;N ′
k). From

the large-argument asymptotics of the incomplete gamma function [9, p. 179]

Γ(a, z) ∼ za−1e−z (|z| → ∞, | arg z| < 3
2
π)

and the first equation in (3.9), the sums involving the remainders are abso-
lutely convergent, since the decay of the late terms is controlled by k−Nk−1 and
k−N ′

k
−1. It then follows that the result in (3.13) is exact and that no further

expansion process is required.
The infinite sequences of exponentials e2πia(k+λ) and e−2πia(k+λ′) for non-

negative integer k are seen to emerge from the remainders in (3.13), or (3.16),
with the terminant functions Tνk(−iX) and Tν′

k
(iX ′), respectively, as coeffi-

cients. These exponentials are maximally subdominant on the negative and
positive imaginary axes, respectively and steadily increase in magnitude as one
approaches the negative real a-axis where they eventually combine to generate
the singularities of L(λ, a, s) at negative integer values of a.

If the truncation indices Nk and N ′
k are now chosen to correspond to the

optimal truncation values (i.e., truncation at or near the least term in the
corresponding inner series over r in (3.13)), then it is easily shown that

Nk ≃ 2π(k + λ)|a|, N ′
k ≃ 2π(k + λ′)|a|. (3.17)
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In this case, νk = |X|+O(1), ν ′
k = |X ′|+O(1) and we see that the order and

the argument of each terminant function appearing in (3.13) are approximately
equal in the limit |a| → ∞. When |ν| ∼ |z| ≫ 1, the function Tν(z) possesses
the asymptotic behaviour [8], [12, §6.2.6]

Tν(z) ∼



























−ie(π−φ)iν

1 + e−iφ

e−z−|z|

√

2π|z|
{1 +O(z−1)} −π + δ ≤ φ ≤ π − δ

1
2
+ 1

2
erf [c(φ)(1

2
|z|)

1

2 ] +O(z−
1

2 e−
1

2
|z|c2(φ)), δ ≤ φ ≤ 2π − δ

(3.18)
where φ = arg z, δ denotes an arbitrarily small positive quantity and c(φ) is
defined implicitly by

1
2
c2(φ) = 1 + i(φ− π)− ei(φ−π)

with the branch for c(φ) chosen so that c(φ) ≃ φ − π near φ = π. Thus,
the function Tν(z) changes rapidly, but smoothly, from being exponentially
small in | arg z| < π to having the approximate value unity as arg z passes
continuously through π.

The result in (3.13) and (3.16), when the truncation indices Nk and N ′
k

are chosen according to (3.17), then constitutes the exponentially improved
expansion of L(λ, a, s). For fixed, large |a| in the vicinity of arg a = 1

2
π,

the dominant contribution to the remainder arises from the term involving
Tν′

k
(iX ′), the other remainder involving Tνk(−iX) being smaller. The coeffi-

cient of each subdominant exponential exp (2πi(k+ λ′)a) then has the leading
behaviour from (3.18) given by

e−
1

2
πis Tν′

k
(iX ′) ∼ e−

1

2
πis{1

2
+ 1

2
erf [c(θ − 1

2
π)

√

π(k + λ′)|a| ]},

where θ = arg a and, near θ = 1
2
π, the quantity c(θ − 1

2
π) ≃ θ − 1

2
π. In the

vicinity of arg a = −1
2
π, the role of the two remainders is reversed and the

coefficient of each subdominant exponential exp (−2πi(k + λ)a) becomes

−e−
3

2
πisTνk(−iX) = e

1

2
πis(1− Tνk(Xe

3

2
πi)) (3.19)

≃ e
1

2
πis{1

2
− 1

2
erf [c(θ + 1

2
π)

√

π(k + λ)|a| ]},

where we have made use of the connection formula for Tν(z) given by [12,
Eq. (6.2.45)]

Tν(ze
−πi) = e2πiν{Tν(ze

πi)− 1}. (3.20)

The approximate functional form of the Stokes multiplier for L(λ, a, s)

(excluding the factors e∓
1

2
πis/Γ(s)) in the vicinity of arg a = ±1

2
π is therefore

found to be

1
2
± 1

2
erf [(θ ∓ 1

2
π)

√

π(k + ξ)|a| ], (k = 0, 1, 2, . . .), (3.21)
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respectively, where ξ = λ′ near arg a = 1
2
π and ξ = λ near arg a = −1

2
π.

When λ = 1, ξ ≡ 0 and the form (3.21) then applies to the Hurwitz zeta
function ζ(s, a) with k = 1, 2, . . . ; see [10, Section 3]. The approximation (3.21)
describes the birth of each subdominant exponential in the neighbourhood
of the positive and negative imaginary axes on the increasingly sharp scale
(π(k + ξ)|a|)1/2. It is immediately apparent that the transition across the
Stokes lines is associated with unequal scales in the upper and lower half-planes,
except when λ = 1

2
(where the function L(1

2
, a, s) reduces to the alternating

variant of the Hurwitz zeta function).

4. Numerical results

In order to display numerically the smooth appearance of the nth subdominant
exponential e2πi(n+λ′)a in the vicinity of arg a = 1

2
π (at fixed |a|), it is neces-

sary to ‘peel off’ from Z(λ, a, s) the larger subdominant exponentials in the
remainder terms and all larger terms of the asymptotic series in (3.13). This
has been carried out in the expansion in (3.16) by means of the rearrangement
in (3.14)

We define the nth Stokes multiplier Sn(θ) (with θ = arg a) associated with
the exponential e2πi(n+λ′)a in the vicinity of arg a = 1

2
π by subtracting from

Z(λ, s, a)/(2π)s the asymptotic series Hm(a;λ, λ
′) corresponding to 0 ≤ m ≤ n

and the larger subdominant exponentials 0 ≤ m ≤ n− 1 in R′
m(λ

′, a;N ′
m) and

0 ≤ m ≤ n in Rm(λ, a;Nm). Thus we have

Z(λ, s, a)

(2π)s
−

i

2π

n
∑

m=0

Hm(a;λ, λ
′) = e

1

2
πis

n−1
∑

m=0

R′
m(λ

′, a;N ′
m)

(m+ λ′)1−s

−e−
1

2
πis

n
∑

m=0

Rm(λ, a;Nm)

(m+ λ)1−s
+

e2πi(n+λ′)a− 1

2
πis

(n+ λ′)1−s
Sn(θ).

It then follows that near arg a = 1
2
π

Sn(θ) =
e−2πi(n+λ′)a+ 1

2
πis

(n+ λ′)1−s

{

Z(λ, s, a)

(2π)s
−

i

2π

n
∑

m=0

Hm(a;λ, λ
′)

−e
1

2
πis

n−1
∑

m=0

R′
m(λ

′, a;N ′
m)

(m+ λ′)1−s
+ e−

1

2
πis

n
∑

m=0

Rm(λ, a;Nm)

(m+ λ)1−s

}

(4.1)

for n = 0, 1, 2, . . . .
Similarly, near arg a = −1

2
π, we write the term corresponding to m = n

in the sum involving Rm(λ, a;Nm) in (3.16) with the aid of (3.19). Then the
Stokes multiplier near arg a = −1

2
π is defined by

Sn(θ) =
e2πi(n+λ)a− 1

2
πis

(n+ λ)1−s

{

Z(λ, s, a)

(2π)s
−

i

2π

n
∑

m=0

Hm(a;λ, λ
′)
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Table 1: The real part of the Stokes multiplier S0(θ) for a = 5eiθ when s = 4 and λ = 2/3
compared with the approximate value (3.21) with k = 0. The optimal truncation indices
are N0 = 17, N ′

0
= 7.

θ/π ℜ(S0) Approx S0 θ/π ℜ(S0) Approx S0

0.30 0.02114 0.02101 −0.30 0.00216 0.00202
0.40 0.15648 0.15466 −0.40 0.07660 0.07525
0.45 0.30653 0.30562 −0.45 0.23102 0.23611
0.48 0.41977 0.41944 −0.48 0.38280 0.38685
0.49 0.45968 0.45951 −0.49 0.44063 0.44284
0.50 0.50000 0.50000 −0.50 0.50000 0.50000
0.51 0.54032 0.54049 −0.51 0.55937 0.55716
0.52 0.58023 0.58056 −0.52 0.61720 0.61315
0.55 0.69347 0.69438 −0.55 0.76898 0.76389
0.60 0.84352 0.84534 −0.60 0.92340 0.92475
0.70 0.97886 0.97899 −0.70 0.99784 0.99798

−e
1

2
πis

n
∑

m=0

R′
m(λ

′, a;N ′
m)

(m+ λ′)1−s
+ e−

1

2
πis

n−1
∑

m=0

Rm(λ, a;Nm)

(m+ λ)1−s

}

(4.2)

for n = 0, 1, 2, . . . .

In Tables 1 and 2 we show the real part2 of Sn(θ) for n = 0 and 1 com-
puted from (4.1) and (4.2) compared with the approximate value in (3.21)
when a = 5eiθ and s = 4, λ = 2

3
as a function of θ in the vicinity of the

positive and negative imaginary a-axes. In the computation of Sn(θ) it is nec-
essary to compute the terms Rm(λ, a;Nm) and R′

m(λ
′, a;N ′

m) by means of the
incomplete gamma function representation in (3.9) and the sum Hm(a;λ, λ

′)
to the required exponential accuracy. The optimal truncation indices Nk and
N ′

k were obtained by inspection of the terms in the algebraic expansions. In
addition, when computing the terminant functions appearing in Rm(λ, a;Nm)
and R′

m(λ
′, a;N ′

m) one must use the connection formula (3.19) once the argu-
ment of z in Tν(z) has exceeded π, since Mathematica only computes the value
of the incomplete gamma function in the principal sector −π < arg z ≤ π.

It is seen that there is good agreement between the real part of the com-
puted values of the Stokes multiplier and the predicted approximate values
in (3.21). Moreover, the tables confirm that the transition scales across the
positive and negative imaginary a-axes depend on λ′ and λ, respectively, and
are indeed unequal (except when λ = 1

2
).

2There is also a small imaginary part to Sn(θ) that is not presented.
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Table 2: The real part of the Stokes multiplier S1(θ) for a = 5eiθ when s = 4 and λ = 2/3
compared with the approximate value (3.21) with k = 1. The optimal truncation indices
are N0 = 17, N ′

0
= 7, N1 = 49, N ′

1
= 38.

θ/π ℜ(S1) Approx S1 θ/π ℜ(S1) Approx S1

0.35 0.00114 0.00114 −0.35 0.00021 0.00032
0.40 0.02157 0.02101 −0.40 0.01128 0.01151
0.45 0.15510 0.15466 −0.45 0.12807 0.12785
0.48 0.34208 0.34213 −0.48 0.32480 0.32468
0.49 0.41939 0.41944 −0.49 0.41014 0.41009
0.50 0.50000 0.50000 −0.50 0.50000 0.50000
0.51 0.58061 0.58056 −0.51 0.58986 0.58991
0.52 0.65792 0.65787 −0.52 0.67520 0.67532
0.55 0.84490 0.84534 −0.55 0.87193 0.87215
0.60 0.97843 0.97899 −0.60 0.98872 0.98849
0.65 0.99889 0.99886 −0.65 0.99979 0.99968

Appendix A: Estimation of the remainder RK(λ, a, s) in (2.4)

The remainder term RK(λ, a, s) in (2.4) resulting from displacement of the
integration path in (2.3) is given by

RK(λ, a, s) =
a−s

2πi

∫ K−c+∞i

K−c−∞i
Γ(−u)Γ(s+ u)F (λ,−u) a−udu (0 < c < 1).

Following the procedure described in Section 3 combined with use of the func-
tional equation for F (λ,−u) in (3.2), we easily obtain

RK(λ, a, s)

(2π)s
= e−

1

2
πis

∞
∑

k=0

′(k+λ′)s−1eiX
′

Tν(iX
′)−e−

3

2
πis

∞
∑

k=0

(k+λ)s−1e−iX Tν(−iX),

(A.1)
where Tν(z) is the terminant function in (3.9), ν = K+s and X , X ′ are defined
in (3.6).

Since [12, p. 260]

ezTν(z) = −ieπiν
Γ(ν)

2π
U(ν, ν, z),

where U(a, b, z) denotes the second confluent hypergeometric function [9, p. 322],
it is seen that the expansion (2.4) with the remainder given in (A.1) becomes

L(λ, a, s) = a−s +
K−1
∑

k=0

(−)k

k!
(s)kF (λ,−k) a−s−k + (−)K(2π)s

(s)K
2πi
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×
{

e
1

2
πis

∞
∑

k=0

(k + λ′)s−1U(ν, ν, iX ′)− e−
1

2
πis

∞
∑

k=0

(k + λ)s−1U(ν, ν,−iX)
}

(A.2)
when 0 < λ < 1. This is similar to, but not identical with, the expansion
obtained in [6].

For fixed ν, we have the asymptotic behaviour [9, p. 328]

U(ν, ν, z) ∼ z−ν (|z| → ∞, | arg z| < 3
2
π).

It then follows that for fixed integer K

RK(λ, a, s)

(2π)s
∼ (2πa)−ν Γ(ν)

2πi

{

e
1

2
πiK

∞
∑

k=0

′(k+λ′)−K−1 − e−
1

2
πiK

∞
∑

k=0

(k+λ)−K−1
}

= O(a−K−s) (A.3)

as |a| → ∞ in | arg a| < π, since the sums are finite and independent of a.

Appendix B: The double series rearrangement in (3.14)

The rearrangement of the double series in (3.14) follows the procedure de-
scribed in [3]; see also [12, §6.4.3] for an account of this process. If we set
Ar := (−i)rΓ(r + s)/(2πa)r+s, the double sum in (3.13) involving λ and the
truncation indices {Nk} (k ≥ 0) can be rearranged3 as

∞
∑

k=0

Nk−1
∑

r=1

Ar

(k + λ)r+1

=
N0−1
∑

r=1

Ar

λr+1
+

(N0−1
∑

r=1

+
N1−1
∑

r=N0

)

Ar

(1+λ)r+1
+

(N0−1
∑

r=1

+
N1−1
∑

r=N0

+
N2−1
∑

r=N1

)

Ar

(2+λ)r+1
+ · · ·

=
N0−1
∑

r=1

Ar

∞
∑

k=0

1

(k+λ)r+1
+

N1−1
∑

r=N0

Ar

∞
∑

k=1

1

(k+λ)r+1
+

N2−1
∑

r=N1

Ar

∞
∑

k=2

1

(k+λ)r+1
+ · · ·

=
∞
∑

m=0

Nm−1
∑

r=Nm−1

Ar ζ(r + 1, m+ λ),

where the sums over k have been evaluated in terms of the Hurwitz zeta
function and N−1 = 1. A similar result applies to the other double sum
involving λ′ in (3.13) with N ′

−1 = 1.

3The modified double series involves the function ζ(r+1,m+λ); however, its evaluation
is straightforward for m = 0, 1, 2, . . . .
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