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Abstract

In this work, we give well-known results related to some properties,

dual spaces and matrix transformations of the sequence space bv and

introduce the matrix domain of space bv with arbitrary triangle matrix

A. Afterward, we choose the matrix A as Cesàro mean of order one, gen-

eralized weighted mean and Riesz mean and compute α−, β−, γ−duals

of these spaces. And also, we characterize the matrix classes of the new

spaces.
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1 Introduction

The set of all sequences denotes with ω := CN := {x = (xk) : x : N → C, k →
xk := x(k)}, where C denotes the complex field and N = {0, 1, 2, . . .}. Each
linear subspace of ω (with the induced addition and scalar multiplication) is
called a sequence space. We will write φ, ℓ∞, c and c0 for the sets of all finite,
bounded, convergent and null sequences, respectively. It obviously that these
sets are subsets of ω.

A sequence, whose k − th term is xk, is denoted by x or (xk). By e and
e(n), (n = 0, 1, 2, ...), we denote the sequences such that ek = 1 for k = 0, 1, 2, ...,

and e
(n)
n = 1 and e

(n)
k = 0 for k 6= n.

A coordinate space (or K−space) is a vector space of numerical sequences,
where addition and scalar multiplication are defined pointwise. That is, a
sequence space X with a linear topology is called a K-space provided each
of the maps pi : X → C defined by pi(x) = xi is continuous for all i ∈ N.
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A BK−space is a K−space, which is also a Banach space with continuous
coordinate functionals fk(x) = xk, (k = 1, 2, ...). A K−space K is called an
FK−space providedX is a complete linear metric space. An FK−space whose
topology is normable is called a BK− space. A sequence (bn), (n = 0, 1, 2, . . .)
in a linear metric X is called a Schauder basis if for each x ∈ X there exists
a unique sequence (αn), (n = 0, 1, 2, . . .) of scalars such that x =

∑
∞

n=0 αnbn.
An FK−space X is said to have AK property, if φ ⊂ X and {e(n)} is a basis
for X and φ = span{e(n)}, the set of all finitely non-zero sequences.

The series
∑

αkbk which has the sum x is then called the expansion of x
with respect to (bn), and written as x =

∑
αkbk. An FK−space X is said to

have AK property, if φ ⊂ X and {ek} is a basis for X , where ek is a sequence
whose only non-zero term is a 1 in kth place for each k ∈ N and φ = span{ek},
the set of all finitely non-zero sequences.

Let X is a sequence space and A is an infinite matrix. The sequence space

XA = {x = (xk) ∈ ω : Ax ∈ X} (1)

is called the matrix domain ofX which is a sequence space(for several examples
of matrix domains, see [6] p. 49-176).
We write U for the set of all sequences u = (uk) such that uk 6= 0 for all k ∈ N.
For u ∈ U , let 1/u = (1/uk). Let u, v ∈ U , (tk) be a sequence of positive
and write Tn =

∑n

k=0 tk. Now, we define the difference matrix ∆ = (δnk), the
matrix C = (cnk) of the Cesaro mean of order one, the generalized weighted
mean or factorable matrix G(u, v) = (gnk) and the matrix Rt = (rtnk) of the
Riesz mean by

δnk =

{
(−1)n−k , (n− 1 ≤ k ≤ n)

0 , (0 ≤ k < n− 1 or k > n)
(2)

cnk =

{
1

n+1
, (0 ≤ k ≤ n)

0 , (k > n)

gnk =

{
unvk , (0 ≤ k ≤ n)
0 , (k > n)

rtnk =

{
tk/Tn , (0 ≤ k ≤ n)
0 , (k > n)

for all k, n ∈ N; where un depends only on n and vk only on k.
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In this work, we give well-known results related to some properties, dual
spaces and matrix transformations of the sequence space bv and introduce the
matrix domain of space bv with arbitrary triangle matrix A. Afterward, we
choose the matrix A as Cesàro mean of order one, generalized weighted mean
and Riesz mean and compute α−, β − γ−duals of these spaces. And also, we
characterize the matrix classes of the spaces bv(C), bv(G), bv(R).

2 Well-Known Results

In this section, we will give some well-known results and will define a new form
of the sequence space bv with arbitrary triangle A.

The space of all sequences of bounded variation defined by

bv =

{
x = (xk) ∈ ω :

∞∑

k=1

|xk − xk−1| < ∞

}
,

which is a BK−space under the norm ‖x‖bv = |x0| +
∑

∞

k=1 |xk − xk−1| for
x ∈ bv. The space bv0 denotes bv0 = bv ∩ c0. It is clear that bv = bv0 + {e}.
Also the inclusions ℓ1 ⊂ bv0 ⊂ bv = bv0 + {e} ⊂ c are strict.

Let X be a sequence space and ∆ denotes the matrix as defined by (2). The
matrix domain X∆ for X = {ℓ∞, c, c0} is called the difference sequence spaces,
which was firstly defined and studied by Kizmaz [22]. If we choose X = ℓ1,
the space ℓ1(∆) is called the space of all sequences of bounded variation and
denote by bv. In [8], Başar and Altay have defined the sequence space bvp for
1 ≤ p ≤ ∞ which consists of all sequences such that ∆-transforms of them are
in ℓp and have studied several properties of these spaces. Başar and Altay[8]
proved that the space bvp is a BK− space with the norm ‖x‖bvp = ‖∆x‖ℓp and
linearly isomorphic to ℓp for 1 ≤ p ≤ ∞. The inclusion relations for the space
bvp are given in [8] as below:

(i) The inclusion ℓp ⊂ bvp strictly holds for 1 ≤ p ≤ ∞.

(ii) Neither of the spaces bvp and ℓ∞ includes the other one, where 1 < p <
∞.

(iii) If 1 ≤ p < s, then bvp ⊂ bvs.

Define a sequence b(k) = {b
(k)
n }n∈N of elements of the space bvp for every

fixed k ∈ N by 0 for n < k and 1 for n ≥ k. Then the sequence {b
(k)
n }n∈N is

a Schauder basis for the space bvp and every sequence x ∈ bvp has a unique
representation x =

∑
k(∆x)kb

(k) for all k ∈ N. The space bv∞ has no Schauder
basis[8].



210 Murat Kirişci

Let X and Y be two sequence spaces, and A = (ank) be an infinite matrix
of complex numbers ank, where k, n ∈ N. Then, we say that A defines a matrix
mapping from X into Y , and we denote it by writing A : X → Y if for every
sequence x = (xk) ∈ X . The sequence Ax = {(Ax)n}, the A-transform of x,
is in Y ; where

(Ax)n =
∑

k

ankxk for each n ∈ N. (3)

For simplicity in notation, here and in what follows, the summation without
limits runs from 0 to ∞. By (X : Y ), we denote the class of all matrices
A such that A : X → Y . Thus, A ∈ (X : Y ) if and only if the series on
the right side of (3) converges for each n ∈ N and each x ∈ X and we have
Ax = {(Ax)n}n∈N ∈ Y for all x ∈ X . A sequence x is said to be A-summable
to l if Ax converges to l which is called the A-limit of x.

If X, Y ⊂ ω and z any sequence, we can write z−1 ∗X = {x = (xk) ∈ ω :
xz ∈ X} and M(X, Y ) =

⋂
x∈X x−1 ∗ Y . If we choose Y = ℓ1, cs, bs, then we

obtain the α−, β−, γ−duals of X , respectively as

Xα = M(X, ℓ1) = {a = (ak) ∈ ω : ax = (akxk) ∈ ℓ1 for all x ∈ X}

Xβ = M(X, cs) = {a = (ak) ∈ ω : ax = (akxk) ∈ cs for all x ∈ X}

Xγ = M(X, bs) = {a = (ak) ∈ ω : ax = (akxk) ∈ bs for all x ∈ X}.

The α−, β−, γ−duals of classical sequence spaces are defined by

cα0 = cα = ℓα
∞

= ℓ1, ℓα1 = ℓ∞, csα = bsα = bvα = bvα0 = ℓ1

cβ0 = cβ = ℓβ∞ = ℓ1, ℓβ1 = ℓ∞, csβ = bv, bsβ = bv0, bvβ = cs, bvβ0 = bs

cγ0 = cγ = ℓγ
∞

= ℓ1, ℓγ1 = ℓ∞, csγ = bsγ = bv, bvγ = bvγ0 = bs.

The continuous dual of X is the space of all continuous linear functionals
on X and is denote by X∗. The continuous dual X∗ with the norm ‖.‖∗ defined
by ‖f‖∗ = sup {|f(x)| : ‖x‖ = 1} for f ∈ X∗.

The spaces c∗ and c∗0 are norm isomorphic with ℓ1. Also, ‖a‖β = ‖a‖ℓ1 for
all a ∈ ℓβ∞.

The following theorem is the most important result in the theory of matrix
transformations:

Theorem 2.1. [38, Theorem 4.2.8] Matrix transformations between BK−spaces
are continuous.
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In [5], Başar and Altay developed very useful tools for duals and matrix
transformations of sequence spaces as below:

Theorem 2.2. [8, Lemma 5.3] Let X, Y be any two sequence spaces, A be
an infinite matrix and U a triangle matrix matrix.Then, A ∈ (X : YU) if and
only if UA ∈ (X : Y ).

Theorem 2.3. [5, Theorem 3.1] BU
µ = (bnk) be defined via a sequence

a = (ak) ∈ ω and inverse of the triangle matrix U = (unk) by

bnk =

n∑

j=k

ajvjk

for all k, n ∈ N. Then,

λβ
U = {a = (ak) ∈ ω : BU ∈ (λ : c)}

and

λγ
U = {a = (ak) ∈ ω : BU ∈ (λ : ℓ∞)}.

The following theorem proved by Zeller [39]:

Theorem 2.4. Let X be an FK−space whose topology is given by means
of the seminorms {qn}

∞
n=1 and let A be an infinite matrix. Then XA is an

FK−space when topologized by

x → |xj| (j = 1, 2, . . .)

x → sup
n

|

n∑

j=1

aijxj | (i = 1, 2, . . .)

x → qn(Ax) (n = 1, 2, . . .).

Following theorems are given by Bennet [19].

Theorem 2.5. An FK−space X contains ℓ1 if and only if {e(j) : j =
1, 2, . . .} is a bounded subsets of X.

Theorem 2.6. Let A be a matrix and X an FK−sace. Then A maps ℓ1
into X if and only if the columns of A belong to X and form a bounded subset
there.

Theorem 2.7. An FK−space contains bv0(bv) if and only if (e ∈ E) and
{
∑n

j=1 e
(j) : j = 1, 2, . . .} is a bounded subsets of X.
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Theorem 2.8. Let A be a matrix and X an FK−sace. Then A maps bv0
into X if and only if the columns of A belong to X and their partial sums form
a bounded subset there.

The important class of co-null FK−space was introduced by Snyder [36]:
An FK−space X containing ϕ∪{e} is said to be co-null if

∑
∞

j=1 e
j = e weakly

in X .

Therefore, using the definition of co-null and Theorem 2.7, we have:

Corollary 2.9. [19] Any co-null FK−space must contain bv.

Theorem 2.10. [38, Theorem 4.3.2] Let (X, ‖.‖) be a BK−space. Then
Xβ is a BK−space with ‖a‖β = sup {supn |

∑n

k=0 akxk| : ‖x‖ = 1}.

Theorem 2.11. [38, Theorem 7.2.9] The inclusion Xβ ⊂ X∗ holds in the
following sense: Let thê: Xβ → X∗ be defined by (̂a) = â : X → C, (a ∈ Xβ)
where â(x) =

∑
∞

k=0 akxk for all x ∈ X. Then̂is an isomorphism into X∗. If
X has AK, then the map̂is onto X∗.

Now, we define the space bv with a lower triangle matrix A = (ank) for all
k, n ∈ N as below:

bv(A) = {x = (xk) ∈ ω : Ax ∈ bv} . (4)

The space bv is BK−space with the norm ‖x‖bv = ‖∆x‖ℓ1 and A is a tri-
angle matrix. Then, from Theorem 4.3.2 in [38], we say that the space bv(A)
is a BK−space with the norm ‖x‖bv(A) = ‖Ax‖bv.

If A is a triangle, then one can easily observe that the sequence XA and X
are linearly isomorphic,i.e., XA

∼= X . Therefore, the spaces bv and bv(A)are
norm isomorphic to the spaced ℓ1 and bv, respectively.

Now we give some results:

Lemma 2.12. Let A = (ank) be an infinite matrix. Then, the following
statements hold:

(i) A ∈ (ℓ1 : ℓ∞) if and only if

sup
k,n∈N

|ank| < ∞. (5)

(ii) A ∈ (ℓ1 : c) if and only if (5) holds, and there are αk,∈ C such that

lim
n→∞

ank = αk for each k ∈ N. (6)

(iii) A ∈ (ℓ1 : ℓ1) if and only if

sup
k∈N

∑

n

|ank| < ∞. (7)
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3 Applications

In this section, we give some results related to the space bv(A) as choose well-
known matrices instead of arbitrary matrix A.

3.1 The space bv(C)

We give the matrix C1 = (cnk) instead of the matrix A = (ank), in (4). Then,
we obtain the space bv(C) as below:

bv(C) =

{
x = (xk) ∈ ω :

∑

k

∣∣∣∣∣
1

k + 1

k∑

j=0

xj −
1

k

k−1∑

j=0

xj

∣∣∣∣∣ < ∞

}
. (8)

Using the notation (1), we can denotes the space bv(C) as bv(C) = (bv)C1
=

(ℓ1)∆.C1
, where Φ = φnk = ∆.C1 defined by φnk = −1

(n+1).n
(0 ≤ k < n);

φnk =
1
n

(k = n) and φnk = 0 (k > n) for all n.

The Φ−transform of the sequence x = (xk) defined by

yk =
xk

k + 1
−

1

k(k + 1)

k∑

j=0

xj . (9)

Theorem 3.1. Define a sequence t(k) = {t
(k)
n }n∈N of elements of the space

bv(C) for every fixed k ∈ N by

t(k)n =





(k + 1) , (n = k)
1 , (n < k)
0 , (n > k)

Therefore, the sequence {t(k)}k∈N is a basis for the space bv(C) and any x ∈
bv(C) has a unique representation of the form

x =
∑

k

(Φx)kt
(k).

This theorem can be proved as Theorem 3.1 in [8], we omit details.

Theorem 3.2. The α−dual of the space bv(C) is the set

d1 =

{
a = (ak) ∈ ω : sup

k∈N

∑

n

|bnk| < ∞

}

where the matrix B = (bnk) is defined via the sequence a = (an) ∈ ω by
(n + 1)an (n = k), ak (k < n) and 0 (k > n).
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Proof. Let a = (an) ∈ ω. Using the relation (9), we obtain

anxn =
∑

n

∣∣∣∣∣

n−1∑

k=0

yk + (n+ 1)yn

∣∣∣∣∣ an = (By)n (10)

It follows from (10) that ax = (anxn) ∈ ℓ1 whenever x ∈ bv(C) if and only if
By ∈ ℓ1 whenever y ∈ ℓ1. We obtain that a ∈ [bv(C)]α whenever x ∈ bv(C)
if and only if B ∈ (ℓ1 : ℓ1). Therefore, we get by Lemma 2.12 (iii) with B
instead of A that a ∈ [bv(C)]α if and only if supk∈N

∑
n |bnk| < ∞. This gives

us the result that [bv(C)]α = d1.

Theorem 3.3. Define the sets by

d2 =
{
a = (ak) ∈ ω : lim

n
dnk exists for each k ∈ N

}

d3 =

{
a = (ak) ∈ ω : sup

k

∑

n

|dnk| < ∞

}

where the matrix D = (dnk) is defined via the sequence a = (an) ∈ ω by
(n + 1)an (n = k),

∑n

j=k aj (k > n) and 0 (k < n). Then, [bv(C)]β =
d2 ∩ d3.

Proof. Consider the equation

n∑

k=0

akxk =
n∑

k=0

ak

[
k−1∑

j=0

yj + (k + 1)yk

]
= (Dy)n (n ∈ N). (11)

Therefore, we deduce from Lemma 2.12 (ii) with (11) that ax = (anxn) ∈ cs
whenever x ∈ bv(C) if and only if Dy ∈ c whenever y ∈ ℓ1. From (5) and (6),
we have

lim
n

dnk = αk and sup
k

∑

n

|dnk| < ∞

which shows that [bv(C)]β = d2 ∩ d3.

Theorem 3.4. [bv(C)]γ = d3.

Proof. We obtain from Lemma 2.12 (i) with (11) that ax = (anxn) ∈ bs
whenever x ∈ bv(C) if and only if Dy ∈ ℓ∞ whenever y ∈ ℓ1. Then, we see
from (5) that [bv(C)]γ = d3.
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In this subsection to use, we define the matrices for brevity that

ãnk =

k−1∑

j=0

anj + (k + 1)ank and b̃nk =
ank
n+ 1

−
1

n(n + 1)

n∑

j=0

ajk

for all k, n ∈ N.

Theorem 3.5. Suppose that the entries of the infinite matrices A = (ank)
and E = (enk) are connected with the relation

enk = ãnk (12)

for all k, n ∈ N and Y be any given sequence space. Then, A ∈ (bv(C) : Y ) if
and only if {ank}k∈N ∈ [bv(C)]β for all n ∈ N and E ∈ (ℓ1 : Y ).

Proof. Let Y be any given sequence space. Suppose that (12) holds between
A = (ank) and E = (enk), and take into account that the spaces bv(C) and ℓ1
are norm isomorphic.

Let A ∈ (bv(C) : Y ) and take any y = (yk) ∈ ℓ1. Then ΦE exists and
{ank}k∈N ∈ {bv(C)}β which yields that (12) is necessary and {enk}k∈N ∈ (ℓ1)

β

for each n ∈ N. Hence, Ey exists for each y ∈ ℓ1 and thus
∑

k

enkyk =
∑

k

ankxk for all n ∈ N,

we obtain that Ey = Ax which leads us to the consequence E ∈ (ℓ1 : Y ).

Conversely, let {ank}k∈N ∈ {bv(C)}β for each n ∈ N and E ∈ (ℓ1 : Y ) hold,
and take any x = (xk) ∈ bv(C). Then, Ax exists. Therefore, we obtain from
the equality

m∑

k=0

ankxk =

m∑

k=0

ank

[
k−1∑

j=0

yj + (k + 1)yk

]
=

m∑

k=0

(
m−1∑

j=k

anjyk

)
+ (m+ 1)anmym

for all m,n ∈ N as m → ∞ that Ax = Ey and this shows that E ∈ (ℓ1 : Y ).
This completes the proof.

Theorem 3.6. Suppose that the entries of the infinite matrices B = (̃bnk)
and F = (fnk) are connected with the relation

fnk = b̃nk (13)

for all k, n ∈ N and Y be any given sequence space. Then, B ∈ (Y : bv(C)) if
and only if F ∈ (Y : ℓ1).
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Proof. Let z = (zk) ∈ Y and consider the following equality

m∑

k=0

b̃nkzk =

m∑

k=0

[
ank
n+ 1

−
1

n(n+ 1)

n−1∑

j=0

ajk

]
zk for all, m,n ∈ N

which yields that as m → ∞ that (Fz)n = {Φ(Bz)}n for all n ∈ N. Therefore,
one can observe from here that Bz ∈ bv(C) whenever z ∈ Y if and only if
Fz ∈ ℓ1 whenever z ∈ Y .

3.2 The space bv(G)

In (4), if we choose the matrix G = G(u, v) = (gnk) instead of the matrix
A = (ank), then, we obtain the space bv(G) as below:

bv(G) =

{
x = (xk) ∈ ω :

∑

k

∣∣∣∣∣

k∑

j=0

ukvjxj −
k−1∑

j=0

uk−1vjxj

∣∣∣∣∣ < ∞

}
. (14)

Using the notation (1), we can denotes the space bv(G) as bv(G) = (bv)G(u,v) =
(ℓ1)∆.G(u,v), where Γ = γnk = ∆.G(u, v) defined by γnk = (un − un−1)vk (1 ≤
k < n); γnk = unvn (k = n) and γnk = 0 (k > n) for all n.

The Γ−transform of the sequence x = (xk) defined by

yk =
k−1∑

j=0

(uk − uk−1) vjxj + ukvkxk. (15)

(16)

The Theorem 3.7 and Theorem 3.8 can be proved as Theorem 2.8 in [3],[4]
and Theorem 3.6 in [25], respectively.

Theorem 3.7. Define a sequence s(k) = {s
(k)
n }n∈N of elements of the space

bv(G) for every fixed k ∈ N by

s(k)n =





1
vn

(
1
uk

− 1
uk−1

)
, (1 < k < n)

1
unvn

, (n = k)

0 , (k > n)

Therefore, the sequence {s(k)}k∈N is a basis for the space bv(G) and any x ∈
bv(G) has a unique representation of the form

x =
∑

k

(Γx)ks
(k).
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Theorem 3.8. We define the matrix H = (hnk) as

hnk =





1
vk

(
1
uk

− 1
uk−1

)
an , (1 ≤ k < n)

an
unvn

, (k = n)

0 , (k > n)

(17)

for all k, n ∈ N, where u, v ∈ U , a = (ak) ∈ ω. The α−dual of the space bv(G)
is the set

d5 =

{
a = (ak) ∈ ω : sup

N∈F

∑

k

|hnk| < ∞

}
.

Using the Theorem 2.3 and the matrix (17), we can give β− and γ−duals
of the space bv(G) as below:

Corollary 3.9. Let u, v ∈ U for all k ∈ N. Then,

{bv(G)}β =

{
a = (ak) ∈ ω :

{
1

vk

(
1

uk

−
1

uk−1

)
ak

}
∈ ℓ1 and

(
an

unvn

)
∈ c

}

and

{bv(G)}γ =

{
z = (zk) ∈ ω :

{
1

vk

(
1

uk

−
1

uk−1

)
ak

}
∈ ℓ1 and

(
an

unvn

)
∈ ℓ∞

}
.

Following theorems can be proved as Theorem 4.2 and 4.3 in [25].

Theorem 3.10. Suppose that the entries of the infinite matrices A = (ank)
and B = (bnk) are connected with the relation

ank =

∞∑

j=k

(uj − uj−1)vkbnj or bnk =
1

vk

(
1

uk

−
1

uk−1

)
ank

for all k, n ∈ N and Y be any given sequence space. Then A ∈ (bv(G) : Y ) if
and only if {ank}k∈N ∈ {bv(G)}β for all n ∈ N and B ∈ (ℓ1 : Y ).

Theorem 3.11. Suppose that the entries of the infinite matrices A = (ank)
and T = (tnk) are connected with the relation

tnk =
n∑

j=0

(un − un−1) vjajk

for all k, n ∈ N and Y be any given sequence space. Then, A ∈ (Y : bv(G)) if
and only if T ∈ (Y : ℓ1).



218 Murat Kirişci

3.3 The space bv(R)

If we choose un = 1/Qn, vk = qk in the space bv(G) defined by (14), we obtain
the space bv(R):

bv(R) =

{
x = (xk) ∈ ω :

∑

k

∣∣∣∣∣

k∑

j=0

(qj/Qk) xj −
k−1∑

j=0

(qj/Qk−1) xj

∣∣∣∣∣ < ∞

}
. (18)

we can denotes the space bv(R) as bv(R) = (bv)Rt = (ℓ1)∆.Rt as the spaces
bv(G), where Σ = σnk = ∆.Rt defined by σnk = (1/Qn−1/Qn−1)qk (1 ≤ k <
n); σnk = qn/Qn (k = n) and σnk = 0 (k > n) for all n.

The Σ−transform of the sequence x = (xk) defined by

yk =
k−1∑

j=0

(
1

Qk

−
1

Qk−1

)
qjxj +

qk
Qk

xk. (19)

Following theorems can be proved by Theorem 2.9, Theorem 2.7 in [1],
respectively.

Theorem 3.12. Define a sequence p(k) = {p
(k)
n }n∈N of elements of the space

bv(R) for every fixed k ∈ N by

p(k)n =





(Qk−Qk−1)
qn

, (1 ≤ k < n)
Qn

qn
, (n = k)

0 , (k > n)

Therefore, the sequence {p(k)}k∈N is a basis for the space bv(R) and any x ∈
bv(R) has a unique representation of the form

x =
∑

k

(Σx)kp
(k).

Theorem 3.13. We define the matrix M = (mnk) as

mnk =





(Qn−Qn−1)
qk

an , (1 ≤ k < n)
Qn

qn
an , (k = n)

0 , (k > n)

(20)

for all k, n ∈ N. The α−dual of the space bv(R) is the set

d6 =

{
a = (ak) ∈ ω : sup

N∈F

∑

k

|mnk| < ∞

}
.
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Using the Theorem 2.3 and the matrix (20), we can give β− and γ−duals
of the space bv(R) as below:

Corollary 3.14.

{bv(R)}β =

{
a = (ak) ∈ ω :

{
(Qn −Qn−1)

qk
an

}
∈ ℓ1 and

(
Qn

qn
an

)
∈ c

}

and

{bv(R)}γ =

{
z = (zk) ∈ ω :

{
(Qn −Qn−1)

qk
an

}
∈ ℓ1 and

(
Qn

qn
an

)
∈ ℓ∞

}
.

Theorem 3.15. Suppose that the entries of the infinite matrices A = (ank)
and B = (bnk) are connected with the relation

ank =

∞∑

j=k

(
1

Qn

−
1

Qn−1

)
qjbnj or bnk =

(Qn −Qn−1)

qk
ank

for all k, n ∈ N and Y be any given sequence space. Then A ∈ (bv(R) : Y ) if
and only if {ank}k∈N ∈ {bv(R)}β for all n ∈ N and B ∈ (ℓ1 : Y ).

Theorem 3.16. Suppose that the entries of the infinite matrices A = (ank)
and W = (wnk) are connected with the relation

wnk =
n∑

k=0

(
1

Qn

−
1

Qn−1

)
qjajk

for all k, n ∈ N and Y be any given sequence space. Then, A ∈ (Y : bv(R)) if
and only if W ∈ (Y : ℓ1).

4 Conclusion

The matrix domain X∆ for X = {ℓ∞, c, c0} is called the difference sequence
spaces, which was firstly defined and studied by Kızmaz [22]. If we choose
X = ℓ1, the space ℓ1(∆) is called the space of all sequences of bounded variation
and denote by bv. The space bvp consisting of all sequences whose differences
are in the space ℓp. The space bvp was introduced by Baar and Altay [8]. More
recently, the sequence spaces bv are studied in [8], [9], [19], [20], [21], [26], [31].

Several authors studied deal with the sequence spaces which obtained with
the domain of the triangle matrices. It can be seen that the matrix domains
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for the matrix C1 which known as Cesàro mean of order one in [7], [24], [33],
[35]; for the generalized weighted mean in [3], [4], [14], [15] , [23], [25], [29],
[32], [34]; for the Riesz mean in [1], [2], [10], [11], [13], [16], [17], [18], [27], [28].
Further, different works related to the matrix domain of the sequence spaces
can be seen in [6].

In this work, we give well-known results related to some properties, dual
spaces and matrix transformations of the sequence space bv and introduce the
matrix domain of space bv with arbitrary triangle matrix A. Afterward, we
choose the matrix A as Cesàro mean of order one, generalized weighted mean
and Riesz mean and compute α−, β−, γ−duals of those spaces. And also, we
characterize the matrix classes of the spaces bv(C), bv(G), bv(R).

As a natural continuation of this paper, one can study the domain of dif-
ferent matrices instead of A. Additionally, sequence spaces in this paper can
be defined by a index p for 1 ≤ p < ∞ and a bounded sequence of strictly
positive real numbers (pk) for 0 < pk ≤ 1 and 1 < pk < ∞ and the concept
almost convergence. And also it may be characterized several classes of ma-
trix transformations between new sequence spaces in this work and sequence
spaces which obtained with the domain of different matrices.
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