

The role of socioeconomic status and the development of congenital heart disease: A scoping review

Deliwe P Ngwezi ^{1,2}, Lisa K Hornberger ^{1,2,3*}, Alvaro Osornio-Vargas ^{2,4}

1 Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Canada 2 Women and Children's Health Research Institute, University of Alberta, Canada 3 Department of Obstetrics and Gynecology, Royal Alexandra Hospital, University of Alberta, Canada 4 Department of Pediatrics, University of Alberta, Canada

Abstract

Introduction: Congenital heart disease (CHD) is the most common congenital anomaly affecting 1% of all live births of which the etiology remains unknown. The incidence is higher in developing countries likely related to low literacy, poverty and higher exposures to hazardous environmental nuisances. The role of socioeconomic status (SES) in CHD development has recently received attention. To gain the breadth of knowledge generated from existing publications, we undertook a scoping review of studies examining the relationship between SES and CHD.

Methods: We searched databases using individual or combination of keywords which included non-Medical Subject Heading (non-MeSH) and MeSH terms. We included original observational studies using cohort, case control or ecologic study designs written in English and from 1980-2017.

Results: We identified 26 studies, most of which were conducted in developed economies with very few from developing economies. The majority (18/26, 69%) examined individual maternal SES variables and the risk of CHD, whilst fewer (4/26, 15%) examined associations with SES at the area level or neighborhood level and others (4/26, 15%) examined the individual, family and neighborhood SES levels to weigh the relative contribution of each SES level in CHD development. Individual maternal low education and low skilled occupation were associated with CHD in half of the studies and another half of the studies found no associations between these variables and CHD. Evidence regarding the influence of neighborhood SES alone or multiple SES variables has been inconclusive as well.

Conclusion: There is a paucity of studies from both developed and even more so from developing countries that have examined the influence of SES in CHD development. More knowledge regarding the contribution of various SES measures (i.e., individual, area level, and combinations) on CHD occurrence is required before relevant and effective interventions can be implemented.

Citation: Ngwezi DP, Hornberger LK, Vargas AO (2018) The role of socioeconomic status and the development of congenital heart disease: A scoping review. Adv Pediatr Res 5:19. doi:10.24105/apr.2018.5.19

Received: October 22, 2018; Accepted: November 09, 2018; Published: November 16, 2018

Copyright: © 2018 Ngwezi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests: The authors do not have any competing interests.

Sources of funding:No funding provided.

*Email: lisa.hornberger@albertahealthservices.ca

Introduction

Seventy years ago, the World Health Organization (WHO) was established specifically to provide reliable and objective information that helps to address public health concerns of all nations also provide evidence that would help in health policy formulations [1]. This initiative was followed by the first publication on the concept of

social determinants of health in 1998 which identified social disadvantage and poverty as the root cause of ill health even after provision of medical care [2]. Subsequent empirical studies found associations between identified social predictors and mortality [3] and neural tube defects [4]. In 2008, a commission established by the WHO published a report on actions that governments need to take to address health inequities globally. The

ADVANCES

commission again concluded that health inequities are determined by conditions in which people are born, live, work, access healthcare, education, food, security, shelter and recreational facilities as these factors impact their well-being and full potential in life. It was recognized that decision makers at political and economic levels needed to play an active role in closing the gaps that contribute to the inequities.

Unfortunately, even now, in the 21st century, economic, social, political and health inequalities continue to persist along race and gender lines, and the gap between the rich and poor is growing larger daily [5]. The people who generate the wealth are not the direct beneficiaries and often are exploited, exposed to hazardous occupational conditions with no protection, and work long hours of hard labor with little income to show for their toil [5]. In addition, poor people, due to lack of agency, might be exposed to hazardous environmental pollutants near their places of residences and thus suffer from a "double jeopardy" as shown in some concept papers and empirical studies on environmental justice in some places in the United States [6], including some locations in Canada [7-10].

Congenital heart disease (CHD) is a significant global public health issue affecting 1% of all live births and the most common lethal congenital anomaly in infancy, of which the etiology in most affected children is unknown[11,12]. The impact of CHD is higher in developing countries most likely related to higher population densities, low literacy and poverty levels which speak directly to the social determinants of health espoused in the WHO 2008 report [13,14]. The management of children born with CHD places a huge financial strain on healthcare systems globally and to this effect, most of the studies which have examined socioeconomic status (SES) and CHD have investigated its economic impact due to morbidity and mortality related costs and not as a predictor for CHD development [15-19]. To gain the breadth of knowledge generated from preliminary studies on this topic, we undertook a scoping review of the published literature of studies examining the relationship between SES and CHD.

Methods

ĊĎ

We searched the following databases: Medline, CINAHL, Embase, Scopus, Scifinder, Proquest dissertations and theses databases. We used individual or combination of keywords which included non-MeSH and MeSH terms: ((heart defect* or heart disease* or cardiac defect* or cardiac disease*) and (congenital or newborn* or babies or baby or infant or infants) and ("socioeconomic status "or "social position" or "education" or "income" or "occupat*" or "maternal socioeconomic status" "neighborhood or socioeconomic status" or "neighbourhood socioeconomic status" or "area socioeconomic status"). We included only original observational studies using cohort, case control or ecologic study designs written in English from 1980-2017. We excluded studies which did not have an abstract or full article in English, systematic reviews, studies examining SES in relation to CHD survival, medical management costs, quality of life, neurodevelopmental outcomes, stress and exercise.

Results

Figure 1 is a flow diagram illustrating the process of selection of the studies included in the scoping review. The number of studies has increased from three between 1990-1999 to 13 between 2010-2017 (Supplementary Table 1). Amongst developed economies, half of the studies were conducted in the United States and the majority used individual maternal SES variables as shown in Figure 2A and 2B respectively. The next highest proportions were studies from Europe and Asia following a similar pattern as the studies in the United States. There was one study each from the Middle East, Canada, South America and Africa overall (Figure 2A). Canada and South America had no studies that used individual SES variables in relation to CHD development (Figure 2B).

The body of literature searched on the subject identified 26 studies which examined SES in relation to CHD development as listed in Table 1. The majority of the studies (18/26, 69%) examined individual maternal SES variables and the risk of CHD [20-37], whilst fewer (4/26, 15%) examined associations with SES at the area level or neighborhood level [38-41], and still others (4/26, 15%) examined the individual, family and neighborhood SES to weigh the relative contribution of each level of the SES variables in CHD development [42-45].

Reference			Study		Study		Level of SES	
Number	Author	Year	Location	Study Design	Period	SES Measure	Assignment	Findings
					1982-	Education and		Level of education not
20	Tikkanen et al.	1992	Finland	СС	1983	occupation	Individual	associated with CHD
					1971-	Income and		
38	Fixler et al.	1993	USA	Ecologic	1984	education	Census tract	No association with CHD
					1982-			
23	Pradat P	1993	Sweden	CC	1986	Occupation	Individual	No association with CHD
					1995-	Education and		Hazardous occupation
22	Bassili et al.	2000	Egypt	сс	1997	occupation	Individual	associated with CHD risk
			United		1986-	Carstairs deprivation		Increased risk of CHD with
39	Vriiheid et al.	2000	Kingdom	CC	1993	index	Census tract	increased deprivation
					1000	Education.		
						occupation and		Individual low SES and
					1987-	neighborhood SES	Individual. Census	neighborhood SES associated
42	Carmichael et al.	2003	USA	сс	1989	index	tract	with dTGA,
					1968-			
21	Williams et al.	2004	USA	сс	1980	Education	Individual	Low SES associated with VSD
								No association between SES
								and noncomplex left
					1999-			ventricular outflow tract
25	McBride et al.	2005	USA	Cohort	2001	Education	Individual	obstructions
					1987-			Parental occupation not
24	Batra et al.	2007	USA	сс	2003	Occupation	Individual	associated with VSD
						Parental education,		Low SES at individual and
					1997-	income, occupation,	Individual and	neighborhood level associated
44	Yang et al.	2008	USA	СС	2000	SES Index	household index	with CHD
					1999-	Education, income.	Individual,	Low SES not associated with
43	Carmichael et al.	2009	USA	сс	2004	occupation	household index	conotruncal heart defects

Table 1. Studies Examining Socioeconomic Status and Congenital Heart Disease.

					1999-	Education,		Low SES associated with risk of
26	Kuciene et al.	2009	Lithuania	CC	2005	occupation	Individual	CHD
					2004-			
27	Liu et al.	2009	China	СС	2005	Education	Individual	Low SES associated with CHD
					1999-			
28	Long et al.	2010	USA	Cohort	2004	Education	Individual	Low SES associated with TOF
					1994-		Dissemination	CHD prevalence higher in low
40	Agha et al.	2011	Canada	Cohort	2007	Income, education	Area	SES regions
					1999-			No association with non
29	Agopian et al.	2012	USA	Cohort	2008	Education	Individual	syndromic AVSD
					1997-			No association with non
30	Patel et al.	2012	USA	СС	2005	Education, income	Individual	syndromic AVSD
								Low SES associated with
								increased risk of left sided
					2009-			obstructive defects in
33	Vereczkey et al.	2012	Hungary	СС	2010	Occupation	Individual	unskilled mothers
								Low SES associated with
								increased risk of VSD in
					2009-			unskilled mothers and
32	Vereczkey et al.	2012	Hungary	СС	2010	Occupation	Individual	housewives
					1980-			No association of SES with
31	Vereczkey et al.	2013	Hungary	СС	1996	Occupation	Individual	AVCD
					1999-			Decreased prevalence of CHD
34	Egbe et al.	2014	USA	Cohort	2008	Income	Individual	among upper class whites
					Jan –			Lower incidence of CHD in the
					Dec			lowest SES class compared to
35	Egbe et al.	2014	USA	Cohort	2008	Income	Individual	higher SES class
	0		_		1007		Linmet Basic Need	5
/1	Pawluk	2014	Argentina	cc	2001	Regional SES	Index	Low SES associated with VSD
+1		2014	Aigentind		2001			Increased prevalence of mild
					1008			CHD among higher SES
26	Eabo at al	2015		Cohort	2000	Incomo	Individual	
30	Egne et al.	2012	USA	Conort	2008	income	mulvidual	Caucasidiis

								Deprived neighborhoods
							Individual, family,	associated with CHD.
					2000-	Education, income,	neighborhood	Association not independent
45	Li et al.	2015	Sweden	Cohort	2010	occupation	index	of individual or family SES
					2004-	Education, income,		
37	Out et al.	2016	China	СС	2013	occupation	Individual	Low SES associated with CHD

CC =Case Control

Figure 1. PRISMA flow chart illustrating the selection process of the studies.

Figure 2. A) Distribution of SES studies (individual and neighborhood) and CHD by region. Half of the studies were conducted in the United States followed by Europe and Asia. B) Distribution of SES studies using individual maternal SES variables. Again, half of the studies were conducted in the United States followed by Europe and Asia.

Amongst the studies that examined individual socioeconomic variables and CHD, the variables that were examined were maternal levels of education, whether they had less than a high school education, completed high school or had a college education, income levels and occupation ranging from unskilled, semi-skilled or professional. Education was the variable most commonly assessed in these studies and the findings were inconclusive with largely some reporting associations between maternal education and CHD [21,26-28] and others finding no associations [25,29,30]. Low skilled occupations and low

income similarly were associated with CHD in some studies [22,26,32,33,37] and not in others [20,23,24,30,31]. In the United States, Egbe et al. reported interesting findings on the relationship between income and CHD, where they documented an increased incidence of mild CHD among Caucasian populations in the upper quartiles of SES [34-36] compared to non-Caucasian minority populations. This finding was attributed to enhanced CHD detection with increased access to health care among those of higher SES.

ĊĎ

ADVANCES

Studies which used SES aggregated at various spatial units constituted 15% out of the 26 studies identified. There were 4 studies, and these represented one study each in the United States, the United Kingdom, Canada and Argentina. Two of the four studies used an index [39,41] and the other two used education and income variables at census dissemination area level tract and spatial Three (United aggregation [38,40]. studies Kingdom, Canada and Argentina) found associations with CHD [39-41], whilst a study from the United States [38] found no associations of SES with CHD.

Beyond the individual or aggregated SES studies alone, there were four studies which examined SES variables at different levels to weigh the relative contribution of the individual, household or neighborhood SES level of which three were conducted in the United States [42-44] and one was conducted in Sweden [45]. Only the study conducted in Sweden found associations between deprived neighborhoods and CHD, which was not independent of individual or family SES [45]. The other three studies found no associations [42-44].

Most of the studies employed a case-control design (17/26, 65%), whereas fewer (8/26, 31%) used a retrospective cohort design and one of the 26 (4%) used an ecologic design.

Discussion

Investigations examining the role of SES in the development of CHD have been steadily increasing over the past three decades. Most studies performed to date have been conducted in developed economies; whereas, there remains very limited data from developing economies which carry the largest burden of CHD. The latter likely reflects a lack of resources and availability of and access to information that enables the execution of these studies at individual or community level.

Most published work has examined individual maternal SES variables such as education, occupation and income levels and these have been largely conducted in the United States. The most commonly examined variable has been that of maternal education because it is good predictor of health outcomes [46]. For instance, the reduction in child mortality in the past 40 years has been attributed to increased educational attainment of women of childbearing years [47]. Although

several studies have supported associations between CHD and the level of education or occupation, a comparable number have not, leaving the value of the associations equivocal. Furthermore, some have suggested the opposite, that those socially advantaged may paradoxically have a higher risk of mild CHD; however, such a finding is more likely explained by increased access to health care services among the more advantaged populations in the United States. As already determined in the WHO report on social determinants of health that there is a direct relationship between health of populations and the places where they live, we found no studies specifically examining the relationship between low SES and maternal residential proximity to hazardous waste sites or industrial facilities in the context of CHD development.

Beyond individual SES, poor material living conditions, including deprived neighborhoods, are increasingly being recognized as important contributors to the overall wellbeing of populations [48]. Neighborhood SES has been examined using various geographic units such as census tract or dissemination area or postal code. Composite scores or indices for the geographic unit have been using SES variables such generated as unemployment, education levels. poverty, occupation, rental occupancy, crowding of people living in the corresponding spatial unit. Although the studies examining neighborhood SES have been sparse, the findings suggest a potential role for neighborhood SES and CHD development.

Interestingly, SES and its relationship with health is a complex and multifaceted construct requiring interventions at all levels, and, as such, few studies have also examined the interaction of maternal individual SES with composite SES index at household or neighborhood area level to determine if they each contribute independently to CHD development. The relevance of understanding which SES construct represents the most important determinant of adverse health outcomes will enable decision makers to craft policies aimed at individual intervention or large-scale social policy interventions to improve the quality of life.

CHD is understood to be multifactorial in its etiology and the role of environmental chemical pollutants from various sources has gained increasing attention as well. We have recently

ന്

shown that neighborhoods exposed to very high levels of multiple industrial chemical pollutants had an increased risk of CHD development [49,50]. In addition, other factors such as neighborhood characteristics (e.g. recreational resources, natural spaces, walkability, access to healthy food options) [48] which again relate to elements of SES could modify risk factors for CHD such as obesity and diabetes mellitus [51].

Conclusion and Recommendations

Overall, although increasing in number, there is a paucity of studies examining the role of SES and CHD development. The majority of the studies have used individual maternal SES with education being the most common measure of SES used. They also employed various methodologies such as cohort, case control or ecologic studies with case control method being most commonly used. The evidence arising from the various studies employing individual, aggregate level or multiple SES measures is still inconclusive at best. Globally, there are limited studies from developing or emerging markets compared to developed economies. Even the current studies conducted from developed economies are insufficient to make conclusive associations with CHD. We recommend that more studies be undertaken from both developed and developing economies to examine the influence of the various levels of SES on CHD development as this information would permit comparisons and inform decisions on relevant interventions. Studies that examine the interactions of multi-level SES variables to determine the relative weight of their contribution in their effect modifications are also required. Finally, future studies should also interrogate the phenomenon of environmental injustice particularly for vulnerable populations and its contribution to CHD development.

References

- 1. Europe WHO. Social determinants of health. The Solid Facts. 2003.
- 2. WHO. Social determinats of health. 1998.
- Waitzman NJ, Smith KR. Phantom of the area: povertyarea residence and mortality in the United States. Am J Public Health. 1998;88:973-976.
- Wasserman CR, Shaw GM, Selvin S, Gould JB, Syme SL. Socioeconomic status, neighborhood social conditions, and neural tube defects. Am J Public Health. 1998;88:1674-1680.

- 5. Europe WHO. Review of social determinants and the health divide in the WHO european region: final report. UCL Institute of health equity 2014.
- Brender JD, Zhan FB, Suarez L, Langlois P, Gilani Z, Delima I, et al. Linking environmental hazards and birth defects data. Int J Occup Environ Health. 2006;12:126-133.
- 7. Buzzelli M. Bourdieu does environmental justice? Probing the linkages between population health and air pollution epidemiology. Health & Place. 2007;13:3-13.
- 8. Buzzelli M. Environmental justice in canada-it matters where you live. Canadian policy research networks, ottawa, canada 2008.
- 9. Jerrett M, Eyles J, Cole D, Reader S. Environmental equity in canada: An empirical investigation into the income distribution of pollution in ontario. Environ Plan A. 1997;1777.
- Michael J, Richard TB, Pavlos K, John E, Norm F, Chris G, et al. A GIS - environmental justice analysis of particulate air pollution in Hamilton, Canada. Environ Plan A. 2001;955.
- 11. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890-1900.
- van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al. Birth prevalence of congenital heart disease worldwide. J Am Coll Cardiol. 2011;58:2241-2247.
- 13. Hoffman JIE. The global burden of congenital heart disease. Cardiovasc J Africa. 2013;24:141-145.
- 14. WHO. Commission on social determinants of health. Closing the gap in a generation: Health equity through action on the social determinants of health 2008.
- Mackie AS, Tran DT, Marelli AJ, Kaul P. Cost of congenital heart disease hospitalizations in Canada: A population-based study. Can J Cardiol. 2017;33:792-798.
- 16. Nasr VG, Faraoni D, Valente AM, DiNardo JA. Outcomes and costs of cardiac surgery in adults with congenital heart disease. Pediatr Cardiol. 2017;38:1359-1364.
- Huang L, Schilling C, Dalziel KM, Xie S, Celermajer DS, McNeil JJ, et al. Hospital inpatient costs for single ventricle patients surviving the fontan procedure. Am J Cardiol. 2017;120:467-472.
- Briston DA, Bradley EA, Sabanayagam A, Zaidi AN. Health care costs for adults with congenital heart disease in the United States 2002 to 2012. Am J Cardiol. 2016;118:590-596.
- 19. Czosek RJ, Anderson JB. Congenital heart disease and the cost of mortality. Open Heart. 2016;3:e000448.
- Tikkanen J, Heinonen OP. Occupational risk factors for congenital heart disease. Int Arch Occup Environ Health. 1992;64:59-64.
- 21. Williams LJ, Correa A, Rasmussen S. Maternal lifestyle factors and risk for ventricular septal defects. Birth Defects Res Part A: Clin Mol Teratol. 2004;70:59-64.
- 22. Bassili A, Mokhtar SA, Dabous NI, Zaher SR, Mokhtar MM, Zaki A. Risk factors for congenital heart diseases in Alexandria, Egypt. Eur J Epidemiol. 2000;16:805-814.
- 23. Pradat P. Maternal occupation and congenital heart defects: a case-control study. Int Arch Occup Environ Health. 1993;65:13-18.

OPEN OACCESS Freely available online

- Batra M, Heike CL, Phillips RC, Weiss NS. Geographic and occupational risk factors for ventricular septal defects: Washington state, 1987-2003. Arch Pediatr Adolesc Med. 2007;161:89-95.
- 25. McBride KL, Marengo L, Canfield M, Langlois P, Fixler D, Belmont JW. Epidemiology of noncomplex left ventricular outflow tract obstruction malformations (aortic valve stenosis, coarctation of the aorta, hypoplastic left heart syndrome) in Texas, 1999-2001. Birth Defects Res Part A: Clin Mol Teratol. 2005;73:555-561.
- Kuciene R, Dulskiene V. Maternal socioeconomic and lifestyle factors during pregnancy and the risk of congenital heart defects. Medicina. 2009;45:904-909.
- Liu S, Liu J, Tang J, Ji J, Chen J, Liu C. Environmental risk factors for congenital heart disease in the Shandong Peninsula, China: a hospital-based case-control study. J Epidemiol. 2009;19:122-130.
- Long J, Ramadhani T, Mitchell LE. Epidemiology of nonsyndromic conotruncal heart defects in Texas, 1999-2004. Birth Defects Res Part A: Clin Mol Teratol. 2010;88:971-979.
- Agopian AJ, Mitchell LE, Moulik M, Gupta-Malhotra M, Marengo LK. Descriptive epidemiology of nonsyndromic complete atrioventricular canal defects. Pediatr Perinat Epidemiol. 2012;26:515-524.
- Patel SS, Burns TL, Botto LD, Riehle Colarusso TJ, Lin AE, Shaw GM, et al. Analysis of selected maternal exposures and non-syndromic atrioventricular septal defects in the National Birth Defects Prevention Study, 1997-2005. Am J Med Genet Part A. 2012;158A: 2447-2455.
- Vereczkey A, Kosa Z, Csaky-Szunyogh M, Czeizel AE. Isolated atrioventricular canal defects: Birth outcomes and risk factors: A population-based hungarian case-control study, 1980-1996. Birth Defects Res Part A Clin Mol Teratol. 2013;97:217-224.
- Vereczkey A, Kósa Z, Csáky-Szunyogh M, Urbán R, Czeizel A.E. Ventricular septal defects in function of maternal sociodemographic aspects. Cent Eur J Med. 2012;7:511-522.
- Vereczkey A, Kósa Z, Csáky-Szunyogh M, Urbán R, Czeizel AE. Birth outcomes of cases with left-sided obstructive defects of the heartin the function of maternal socio-demographic factors: a population-based casecontrol study. J Matern Fetal Neonat Med. 2012;25: 2536-2541.
- Egbe A, Uppu S, Lee S, Ho D, Srivastava S. Changing prevalence of severe congenital heart disease: A population-based study. Pediatr Cardiol. 2014;35:1232-1238.
- 35. Egbe A, Uppu S, Stroustrup A, Lee S, Ho D, Srivastava S. Incidences and sociodemographics of specific congenital heart diseases in the United States of America: An evaluation of hospital discharge diagnoses. Pediatr Cardiol. 2014;35:975-982.
- Egbe A, Uppu S, Lee S, Stroustrup A, Ho D, Srivastava S. Temporal variation of birth prevalence of congenital heart disease in the united states. Congenit Heart Dis. 2015;10:43-50.

- 37. Ou Y, Mai J, Zhuang J, Liu X, Wu Y, Gao X, et al. Risk factors of different congenital heart defects in Guangdong, China. Pediatr Res. 2016;79:549-558.
- Fixler DE, Pastor P, Sigman E, Eifler CW. Ethnicity and socioeconomic status: Impact on the diagnosis of congenital heart disease. J Am Coll Cardiol. 1993;21: 1722-1726.
- Vrijheid M, Dolk H, Stone D, Abramsky L, Alberman E, Scott J. Socioeconomic inequalities in risk of congenital anomaly. Arch Dis Child. 2000;82:349-352.
- 40. Agha MM, Glazier RH, Moineddin R, Moore AM, Guttmann A. Socioeconomic status and prevalence of congenital heart defects: Does universal access to health care system eliminate the gap?. Birth Defects Res Part A Clin Mol Teratol. 2011;91:1011-1018.
- 41. Pawluk MS, Campana H, Gili JA, Comas B, Gimenez LG, Villalba MJ, et al. Adverse social determinants and risk for congenital anomalies. Archivos Argentionos De Pediatria. 2014;112:215-223.
- 42. Carmichael SL, Nelson V, Shaw GM, Wasserman CR, Croen LA. Socio-economic status and risk of conotruncal heart defects and orofacial clefts. Paediatr Perinat Epidemiol. 2003;17:264-271.
- Carmichael SL, Ma C, Shaw GM. Socioeconomic measures, orofacial clefts, and conotruncal heart defects in California. Birth Defects Res Part A Clin Mol Teratol. 2009;85:850-857.
- 44. Yang J, Carmichael SL, Canfield M, Song J, Shaw GM. Socioeconomic status in relation to selected birth defects in a large multicentered US case-control study. Am J Epidemiol. 2008;167:145-154.
- 45. Li X, Sundquist J, Hamano T, Zöller B, Sundquist K. Neighbourhood deprivation, individual-level and familiallevel socio-demographic factors and risk of congenital heart disease: A nationwide study from Sweden. Int J Behav Med. 2016;23:112-120.
- 46. Oakes JM, Rossi PH. The measurement of SES in health research: current practice and steps toward a new approach. Soc Sci Med. 2003;56:769-784.
- 47. Gakidou E, Cowling K, Lozano R, Murray CJL. Increased educational attainment and its effect on child mortality in 175 countries between 1970 and 2009: a systematic analysis. Lancet. 2010;376:959-974.
- 48. Diez Roux AV, Mair C. Neighborhoods and health. Ann NY Acad Sci. 2010;1186:125-145.
- Ngwezi DP, Hornberger LK, Serrano-Lomelin J, Nielsen C.C, Fruitman D, Osornio-Vargas A. Industrial developmental toxicants and congenital heart disease in urban and rural Alberta, Canada. Challenges. 2018;9:26.
- Ngwezi DP, Hornberger LK, Cabeza-Gonzalez JL, Chandra S, Fruitman D, Osornio-Vargas A. Tracking trends in emissions of developmental toxicants and potential associations with congenital heart disease in Alberta, Canada. Challenges. 2018;9:28.
- Liu S, Joseph KS, Lisonkova S, Rouleau J, Van den Hof M, Sauve R, et al. Association between maternal chronic conditions and congenital heart defects: a populationbased cohort study. Circulation. 2013;128:583-589.