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Abstract

Let H be a Heisenberg superalgebra. In this paper, the definition of

biderivations and the properties of biderivations on Lie superalgebras

are introduced. And some properties of biderivations on Heisenberg

superalgebras are introduced by the definition of Heisenberg superalge-

bras.
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1 Introduction

Recently,some researchers were interested in biderivations of Lie algebras [1]
and the definition of Heisenberg superalgebras [2].The aim of this paper is to
introduce the properties of biderivations on Heisenberg superalgebras.

2 Preliminary Notes

Definition 2.1 Let L = L0 + L1 be a superalgebra whose multiplication is

denoted by a pointed bracket [−,−]. This implies in particular that [Lα, Lβ] ⊂
Lα+β for all α, β ∈ Z2. We call L is a Lie superalgebra if the multiplication

satisfies the following identities,

[x, y] = −(−1)|x||y|[y, x]
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[x, [y, z]] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0

for all x ∈ L|x|, y ∈ L|y|, z ∈ L|z| and | x |, | y |, | z |∈ Z2.

Definition 2.2 Let L be a Lie algebra. A bilinear map ϕ : L× L −→ L is

called a biderivation of L if it is a derivation with respect to both components,

meaning that

ϕ([x, y], z) = [x, ϕ(y, z)] + [ϕ(x, z), y]

and

ϕ(x, [y, z]) = [ϕ(x, y), z] + [y, ϕ(x, z)]

for all x, y, z ∈ L.

Definition 2.3 Let H be a Lie superalgebra. H is called a Heisenberg su-

peralgebra if [H,H ] = C(H) and dimC(H) = 1.

Remark 2.4 According to the definition of Heisenberg superalgebras, we

have dimC(H) = 1 and C(H) = c, which c ∈ H0̄ and c 6= 0. Owing to

[H,H ] = C(H) ⊆ H0̄, there exists a grade anti-symmetic bilinear function ψ,

s.t. [x, y] = ψ(x, y)c.

Definition 2.5 Let L be a Lie superalgebra. A bilinear map ϕ : L×L −→ L

is called a biderivation of L if it is a derivation with respect to both compo-

nents,meaning that

ϕ([x, y], z) = [x, ϕ(y, z)] + (−1)d(y)(d(ϕ)+d(z)) [ϕ(x, z), y]

and

ϕ(x, [y, z]) = [ϕ(x, y), z] + (−1)d(y)(d(ϕ)+d(x)) [y, ϕ(x, z)]

for all x, y, z ∈ L.

3 Main Results

Theorem 3.1 Let ϕ be a biderivation on Lie superalgebras. Then

[ϕ(x, y), [u, v]] = (−1)(d(y)+d(u))d(ϕ) [[x, y], ϕ(u, v)]

for all x, y, u, v ∈ L.

Proof. Since ϕ is a biderivation on Lie superalgebras,then we have

ϕ([x, y], z) = [x, ϕ(y, z)] + (−1)d(y)(d(ϕ)+d(z)) [ϕ(x, z), y]

and
ϕ(x, [y, z]) = [ϕ(x, y), z] + (−1)d(y)(d(ϕ)+d(x)) [y, ϕ(x, z)]



The properties of biderivations on Heisenberg superalgebras 287

for all x, y.z ∈ L

We compute ϕ([x, u], [y, v]) in two different ways. On one hand, since ϕ is
a biderivation in the first formula. We have that

ϕ([x, u], [y, v]) = [x, ϕ(u, [y, v])] + (−1)d(u)(d(ϕ)+d(y)+d(v)) [ϕ(x, [y, v]), u].

Using the fact that ϕ is a biderivation in the second formula, we further have
that

ϕ([x, u], [y, v]) = [x, [ϕ(u, y), v]]+

(−1)d(y)(d(ϕ)+d(u)) [x, [y, ϕ(u, v)]]+

(−1)d(u)(d(ϕ)+d(y)+d(v)) [[ϕ(x, y), v], u]+

(−1)d(u)(d(ϕ)+d(y)+d(v))+d(y)(d(ϕ)+d(x)) [[y, ϕ(x, v)], u].

On the other hand, computing ϕ([x, u], [y, v]) in a different way we have that

ϕ([x, u], [y, v]) = [[x, ϕ(u, y)], v]+

(−1)d(u)(d(ϕ)+d(y)) [[ϕ(x, y), u], v]+

(−1)d(y)(d(ϕ)+d(x)+d(u)) [y, [x, ϕ(u, v)]]+

(−1)d(y)(d(ϕ)+d(x)+d(u))+d(u)(d(ϕ)+d(v)) [y, [ϕ(x, v), u]].

By comparing the two equalities we have that

[ϕ(x, y), [u, v]] = (−1)(d(y)+d(u))d(ϕ) [[x, y], ϕ(u, v)]

for all x, y, u, v ∈ L.
�

Theorem 3.2 Let C = {λc|λ ∈ C}. We have C is the center of H, there

exists [x, y] ∈ C for all x, y ∈ H and z = η[x, y], η ∈ C, ∃x, y ∈ L, for z ∈ C.

Proof. Let H = H0̄ +H1̄ be a Heisenberg superalgebra.
Case 1 dimH is odd.
Since H = H0̄+H1̄ and H0̄ are Heisenberg algebra whose dimension is odd,

so dimH1̄ is even. Then there is a group of basis {e1, e2, . . . , en, f1, f2, . . . , fn, c}
of H0̄, analogously, the basis of H1̄ are {s1, s2, . . . , sn, t1, t2, . . . , tn}. Then the
basis ofH = H0̄+H1̄ are {e1,e2,. . . ,en,f1,f2,. . . , fn,c, s1, s2, . . . , sn, t1, t2, . . . , tn}.

Let

x = λ1c+

n
∑

i=1

λi+1ei +

n
∑

i=1

λi+n+1fi +

n
∑

i=1

ηisi +

n
∑

i=1

ηi+nti

y = ξ1c+
n

∑

i=1

ξi+1ei +
n

∑

i=1

ξi+n+1fi +
n

∑

i=1

ζisi +
n

∑

i=1

ζi+nti
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λi, ηi, ξi, ζi(i = 1, 2, . . . , 2n+ 1)

[x, y] = [λ1c+
n

∑

i=1

λi+1ei +
n

∑

i=1

λi+n+1fi +
n

∑

i=1

ηisi +
n

∑

i=1

ηi+nti,

ξ1c+
n

∑

i=1

ξi+1ei +
n

∑

i=1

ξi+n+1fi +
n

∑

i=1

ζisi +
n

∑

i=1

ζi+nti]

= [
n

∑

i=1

λi+1ei,

n
∑

i=1

ξi+n+1fi] + [
n

∑

i=1

λi+n+1fi,

n
∑

i=1

ξi+1ei]

+[

n
∑

i=1

ηisi,

n
∑

i=1

ζi+nti] + [

n
∑

i=1

ηi+nti,

n
∑

i=1

ζisi]

=
n

∑

i=1

(λi+1 + ξi+n+1)c−
n

∑

i=1

(λi+n+1 + ξi+1)c

+

n
∑

i=1

(ηi + ζi+n)c+

n
∑

i=1

(ηi+n + ζi)c = λc

So,we have [x, y] = λc, λ ∈ C,i.e.[x, y] ∈ C.
There exists [x, y] = η1c, η1 6= 0, ∃x, y ∈ H and z = η2c, ∃η2 ∈ C for all

z ∈ C, so we have η[x, y] = ηη1c and let η = η2
η1
, we have z = η[x, y].

Case 2 dimH is even.
Since H = H0̄ +H1̄ is a Heisenberg superalgebra whose dimension is even

and H0̄ is Heisenberg algebra whose dimension is odd. So dimH1̄ is odd. Then
there is a group of basis {e1, e2, . . . , en, f1, f2, . . . , fn, c} of H0̄, analogously,
the basis of H1̄ are {s1, s2, . . . , sn, t1, t2, . . . , tn, ω}. Then the basis of H =
H0̄+H1̄ are {e1, e2, . . . , en, f1, f2, . . . , fn, c, s1, s2, . . . , sn, t1, t2, . . . , tn, ω}, which
ψ(ω, ω) = 1.

Let

x = λ1c+
n

∑

i=1

λi+1ei +
n

∑

i=1

λi+n+1fi + η1ω +
n

∑

i=1

ηi+1si +
n

∑

i=1

ηi+n+1ti

y = ξ1c+
n

∑

i=1

ξi+1ei +
n

∑

i=1

ξi+n+1fi + ζ1ω +
n

∑

i=1

ζi+1si +
n

∑

i=1

ζi+n+1ti

λi, ηi, ξi, ζi(i = 1, 2, . . . , 2n+ 1)

[x, y] = [λ1c +
n

∑

i=1

λi+1ei +
n

∑

i=1

λi+n+1fi + η1ω +
n

∑

i=1

ηi+1si +
n

∑

i=1

ηi+n+1ti,
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ξ1c +
n

∑

i=1

ξi+1ei +
n

∑

i=1

ξi+n+1fi + ζ1ω +
n

∑

i=1

ζi+1si +
n

∑

i=1

ζi+n+1ti]

= [

n
∑

i=1

λi+1ei,

n
∑

i=1

ξi+n+1fi] + [

n
∑

i=1

λi+n+1fi,

n
∑

i=1

ξi+1ei]

+η1ζ1[ω, ω] + [
n

∑

i=1

ηi+1si,

n
∑

i=1

ζi+n+1ti] + [
n

∑

i=1

ηi+n+1ti,

n
∑

i=1

ζi+1si]

=

n
∑

i=1

(λi+1 + ξi+n+1)c−

n
∑

i=1

(λi+n+1 + ξi+1)c+ η1ζ1[ω, ω]

+

n
∑

i=1

(ηi+1 + ζi+n+1)c+

n
∑

i=1

(ηi+n+1 + ζi+1)c = λc

So,we have [x, y] = λc, λ ∈ C, i.e., [x, y] ∈ C.
There exists [x, y] = η1c, η1 6= 0, ∃x, y ∈ H and z = η2c, ∃η2 ∈ C for all

z ∈ C, so we have η[x, y] = ηη1c and let η = η2
η1
, we have z = η[x, y]. �

Theorem 3.3 The properties of biderivations on Heisenberg superalgebras.

(1)ϕ(0, z) = 0, ϕ(x, 0) = 0, ∀x, z ∈ H.

(2)ϕ(c, z) = λc, ϕ(x, c) = ηc, ∀x, z ∈ H.

(3)ϕ(c, c) = 0.

(4)ϕ(x, c) = −(−1)d(ϕ)d(x)ϕ(c, x), ∀x ∈ H.

Proof. 1. According to

ϕ([x, y], z) = [x, ϕ(y, z)] + (−1)d(y)(d(ϕ)+d(z)) [ϕ(x, z), y]

and
ϕ(x, [y, z]) = [ϕ(x, y), z] + (−1)d(y)(d(ϕ)+d(x)) [y, ϕ(x, z)]

for all x, y, z ∈ L.
Let x = y = c in the first formula, then we have

ϕ([c, c], z) = [c, ϕ(c, z)] + (−1)d(c)(d(ϕ)+d(z))[ϕ(c, z), c].

Hence ϕ(0, z) = 0, ∀z ∈ H .
Let y = z = c in the second formula, then we have

ϕ(x, [c, c]) = [ϕ(x, c), c] + (−1)d(c)(d(ϕ)+d(x))[c, ϕ(x, c)].

Hence ϕ(x, 0) = 0, ∀x ∈ H .
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2. Let x = c in the first formula, then we have

ϕ([c, y], z) = [c, ϕ(y, z)] + (−1)d(y)(d(ϕ)+d(z))[ϕ(c, z), y].

So we have [ϕ(c, z), y] = 0.According to Theorem 2.2 ,we have ϕ(c, z) = λc ∈
C, ∀z ∈ H .

Let y = c in the second formula, then we have

ϕ(x, [c, z]) = [ϕ(x, c), z] + (−1)d(c)(d(ϕ)+d(x))[c, ϕ(x, z)].

Hence ϕ(x, c) = ηc ∈ C, ∀x ∈ H .
3. Let x = c in the second formula. According to Theorem 2.2, suppose

that [y, z] = λ1c for all y, z ∈ L, then we have

ϕ(c, λ1c) = [ϕ(c, y), z] + (−1)d(y)(d(ϕ)+d(c)) [y, ϕ(c, z)].

Hence ϕ(c, λ1c) = 0, i.e., ϕ(c, c) = 0.
4.Suppose that

[x, y] = 0, [x, z] = 0, [y, z] = λ2c, λ2 6= 0.

So we have






























ϕ(x, λ2c) = [ϕ(x, y), z] + (−1)d(y)(d(ϕ)+d(x)) [y, ϕ(x, z)],
0 = [ϕ(y, x), z] + (−1)d(x)(d(ϕ)+d(y)) [x, ϕ(y, z)],
0 = [ϕ(z, x), y] + (−1)d(x)(d(ϕ)+d(z))[x, ϕ(z, y)],
0 = [x, ϕ(y, z)] + (−1)d(y)(d(ϕ)+d(z)) [ϕ(x, z), y],
0 = [x, ϕ(z, y)] + (−1)d(z)(d(ϕ)+d(y)) [ϕ(x, y), z],
ϕ(λ2c, x) = [y, ϕ(z, x)] + (−1)d(z)(d(ϕ)+d(x))[ϕ(y, x), z].

Let
[ϕ(x, y), z] = x1; [y, ϕ(x, z)] = x2; [ϕ(y, x), z] = x3;

[x, ϕ(y, z)] = x4; [ϕ(z, x), y] = x5; [x, ϕ(z, y)] = x6.

so we have






























ϕ(x, λ2c) = x1 + (−1)d(y)(d(ϕ)+d(x))x2,

0 = x3 + (−1)d(x)(d(ϕ)+d(y))x4,

0 = x5 + (−1)d(x)(d(ϕ)+d(z))x6,

0 = x4 − (−1)d(x)d(y)x2,
0 = x6 + (−1)d(z)(d(ϕ)+d(y))x1,

ϕ(λ2c, x) = −(−1)d(y)(d(ϕ)+d(z)+d(x))x5 + (−1)d(z)(d(ϕ)+d(x))x3.

Hence,
ϕ(x, c) = −(−1)d(ϕ)d(x)ϕ(c, x), ∀x ∈ H.

�
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