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INTRODUCTION

An important issue of the cost-benefit decision making study is 
the coding of benefit, which is usually caused by confronting a 
positive outcome, a reward, following a particular choice behavior. 
Decades of efforts have been made to uncover the neuronal 
mechanism relates to the subjective coding of this reward. The DA 
signal used to be regarded as representing the “hedonic impact” 
induced by positive outcome including preferred food and drink, 
as well as addictive drugs, and in this way the subjective values of 
these rewarding items are reflected [1-6]. Later it is proved that 
the midbrain DA is involved in coding Reward Predicting Error 
(RPE), which stands for the difference between the predicted 
and the actual reward [7-11]. This theory suggests that before a 
decision, individuals make predictions to the potential value of 
the outcome of each option, and this prediction is generated based 
on their past experience about the same or similar situation. And 
when an outcome that better than the prediction is achieved, it 
plays the role as a “positive reinforcer” that could motivate one to 
repeat the same behavior in order to get the “positive reinforcer” 

again, therefore every new round of the choice behavior and its 
consequence updates the experience to provide information for 
future decisions [12,13]. This process is the so-called reinforcement 
learning which provides a basis for adaptation and is vital during 
species evolution. However, despite the decades of efforts, a 
precise relationship between dopaminergic electrical signal and 
the quantity, as well as quality of reward is still not fully illustrated 
yet [14,15]. But because of the clear relationship between DA and 
RPE, the DA system is still in the center of the decision-making 
process. 

Most dopaminergic neurons located in the midbrain, including 
Substantia Nigra pars compacta (SNc) and ventral tegmental 
area (VTA) [16,17]. The electrical activity of a dopaminergic 
neuron contains two main components. One of them is the tonic 
activity which is a comparatively irregular low-frequency impulse 
and serves as a pacemaker, while the other is the phasic activity 
which is a regulated high-frequency burst firing responding to a 
particular event [18-20]. For instance, the phasic activity increases 
when animals receive unpredicted stimulus, mostly positive but 
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also negative or salient stimulus [11,18,21-24]. Furthermore, it 
is recently found that different subcomponent of phasic firing 
may represent different state of the choice and is tightly regulated 
temporally and spatially [4,11,18,25,26]. 

A large amount of evidence has shown the similarity between 
midbrain dopamine mediated reward prediction error and the 
subjective utility of economic decision [27-30]. Particularly, the 
dopamine RPE signal satisfies several criterions of individual’s 
preference defined by economic utility theory, such as 
completeness and transitivity [30]. The dopamine RPE signal 
hence could serve as a bridge between the two research areas of 
neuroscience and economics in studying reward oriented and 
goal-directed behavior [31]. And furthermore, based on this 
correlation, research began to focus on identifying and classifying 
factors that could influence the subjective valuation of the reward 
[29,32].

LITERATURE REVIEW

The neuronal coding of factors that influence cost-benefit 
evaluation

In the past few decades accumulating evidence is beginning to 
uncover the neuronal mechanism underlying cost-benefit decision 
making [33-35]. Several important factors have been shown to 
influence the reward-oriented choice behavior, including quantity 
and quality of the reward, temporal delay before the delivery of 
the reward, uncertainty of receiving the reward, and the physical 
or mental effort required to obtain the reward [29,35-41]. When 
animals need to choose among multiple options, the quantity 
and quality of the expected reward of each option naturally of 
exerts predominant influence [42]. Meanwhile, several other 
factors can also modulate the choosing behavior. One factor is the 
temporal interval between the operant behavior and the reward 
delivery since it has been proved that a temporal delay could 
reduce the probability of animals choosing that option [43,44]. 
A second factor is the uncertainty of receiving the reward which 
is like the real world that most of the choices are made under a 
certain level of uncertainty. In majority cases, animals prefer the 
option with higher probability (more certain) [45], and this type 
of behavior is defined as risk-aversion or uncertainty aversion 
depends on whether the probability is known (risk) or unknown 
(uncertainty) [46-48]. And a third factor frequently discussed is 
the effort required for approaching and obtaining the reward. 
According to the current theories, the delay and uncertainty 
are regarded as parallel to cost [29], or are considered to be one 
member of cost, together with effort, to modify the subjective 
coding of the reward value [49-51]. However, from the perspective 
of the consumer choice theory of economics, cost should not be 
regarded as a determinant of the utility of the reward, but instead 
should be evaluated against the potential utility brought about by 
reward. It is the integrated evaluation of whether the utility of the 
reward worth the cost that finally determines the choice. Such 
discrepancy arises when the relationship among risk, time, effort 
and reward are investigated in different research area. In this work, 
we suggest that, according to the existing literatures investigating 
the neuronal mechanisms relate to these three factors, the effort 
is processed as a cost and evaluated against benefit coding, while 

risk and temporal delay influence the neuronal coding of both 
cost and benefit. 

The influence of time on cost-benefit decision making

The influence of temporal delay on cost-benefit decision making: 
One problem that is usually confronted by mankind and 
animals is to make decision among options containing different 
temporal delays. Sometimes individual should consider giving up 
immediate reward to pursue long-term goal, such as whether to 
take daily exercise (giving up rest) for lifelong health, and whether 
to reduce the intake of sweets to prevent the gain of weight in 
future (to pursue health). In these situations, one needs to make 
a comparison between instant and remote benefit. Usually 
immediate reward is preferred even though it is lower in quality 
and quantity than the remote reward [52-56]. It is explained in 
the way that the subjective utility of the reward is discounting over 
time, and individual then chooses the option with the higher “time 
discounted value”[57-59]. And furthermore, because individuals 
are inclined to choose the immediate reward, therefore in order 
to pursue the long-term goal to achieve an overall higher benefit 
they need to be able to control their impulsiveness [60]. 

The fMRI scanning of human subjects found that multiple 
brain regions of the limbic system, including ventral striatum, 
media Orbitofrontal Cortex (mOFC), Posterior Cingulate 
Cortex (PCC), show increased activity when people choose an 
immediate reward [61,62]. However, the neuronal activities of the 
above brain regions are sensitive to both the reward quality and 
temporal delay [63]. More evidence comes from the in vivo single 
unit neuronal recording of monkeys. Studies show a positive 
relationship between the neuronal activity in striatum and time-
discounted subjective value of the reward, while there is a reduced 
activity of the neuron in lateral cortex nucleus when the temporal 
duration increase [64]. And in consistent with other studies the 
neuronal activity was sensitive to both the reward magnitude 
and the duration of temporal delay [65]. This highly shared 
brain region and the similar neuron response between reward 
value coding and temporal delay duration seems to suggest an 
influence of temporal delay on the subjective coding of the value 
reward instead of a tradeoff between time and reward temporal 
delay is regarded as a cost. 

Rodents are also sensitive to temporal delay of the reward. Evenden 
et al designed a behavior task to test the time discounting rate 
of rats [66], and pharmacological experiments were performed 
with this behavior task. In the task, rats are trained to choose 
between an immediate small food and a delayed large food (5 
folds to the alternative) and the choices of rats are shown by lever 
pressing. Using this behavior task, a time discounting curve can 
be drawn by gradually increase the temporal delay duration of 
the larger food (10, 20, 40, 60 seconds) and record the choice 
of the rats accordingly. They find that intraperitoneal injection 
of amphetamine reduces the probability of choosing the larger 
but delayed reward, and the GABA receptor agonist diazepam 
significantly increases the choices of delayed food when the 
waiting time was 10 or 20 seconds [66]. The in vivo single unit 
recording of the dopamine neurons in VTA showed increases 
activity when rats chose immediate small foods [67]. And D2 
receptor knockdown in VTA enhanced the immediate choice of 
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rats [68] which suggests that the manipulation causes a stronger 
temporal discounting effect on the subjective coding of remote 
reward. NAc is also involved in time related tasks. Lesion to 
NAc causes an “impulsive” choice that rats prefer immediate 
reward [69-71]. However, when the two options show the same 
waiting time rats still chose larger rewards which suggests an 
unbiased preference to food itself. Another study shows that rats 
with lesion in NAc are less sensitive to both reward magnitude 
and temporal delay [72]. Furthermore, the availability of D2/3 
receptors in Nucleus Accumbens core (NAcc) is inversely related 
to the impulsive behavior, that lower D2/3 receptor level predicts 
higher impulsivity [73]. These studies indicated that NAc may 
control the temporal discounting effect on the remote reward, 
and similar with VTA, lesion to NAc also causes a sharp decrease 
of subjective value of the remote reward [74]. The midbrain DA 
system is known to represent the expectation of the reward, 
therefore based on the above-mentioned experimental results it 
seems that the observed DA response change during a temporal 
discounting task may only reflect discounted reward but not 
“discounting” itself. Because if the subjective coding of remote 
reward diminished after dis-functioning of VTA or NAc, rats may 
estimate the option less attractive compare to the instant reward 
even if the delay duration is not changed.  

Besides limbic midbrain regions, Winstanley et al found that 
OFC and BLA are also involved in time discounting choices and 
these two brain regions seems to play opposite roles. Lesion to 
BLA causes a preference towards the immediate reward, while 
rats with a lesion to OFC are more willing to wait for the larger 
reward [75]. The single unit recordings of neurons in OFC of 
both non-human primates and rats show a stronger activity when 
the subject receives a cue predicting a short waiting time [76,77]. 
The amygdala neurons also shows stronger activity to the cue 
that predicts longer waiting time [78,79]. Dorsolateral Prefrontal 
Cortex (DLPFC) is another relevant brain region, but different 
from OFC, the DLPFC neurons responding not only to delay 
but also to reward, therefore it is hypothesized to encode the 
discounted reward value while OFC more closely related to the 
“temporal delay” itself [80]. And since the prefrontal region of 
cortex plays important roles in self-control [81-83], it has been 
suggested that the neuronal signal of OFC represents the ability 
to inhibit the impulsivity towards instant rewards [84]. 

The fMRI study of human subjects showed that the reward 
devaluation caused by temporal discounting is also related to 
ACC and mPFC, which are two brain regions less involved in 
risk related tasks [85,86]. Both ACC and mPFC play important 
roles in cognitive control, and ACC is suggested to be responsible 
for conflict detection, so the involvement of these two brain 
regions suggests a high requirement of cognitive control during 
temporal discounting tasks. This activation of the frontal areas 
that in charges of cognitive control is accordance with the need of 
overcoming one’s impatience in order to pursue larger long-term 
benefit in temporal related choices. 

Therefore, it seems that time has two types of impact on cost-
benefit evaluation. One is that the delayed supply of reward 
will cause a reduction of its subjective value, and another is 
that choosing to wait for the remote and large reward requires 
cognitive control over one’s own impatience which should be 

regarded as a kind of mental cost, and accordingly different brain 
regions are motivated. The mental cost, although has not been 
clearly defined, is closely related to cognitive control and depends 
on neuronal activity of PFC [87]. However interestingly, different 
from the fMRI results of human subjects, lesions to ACC and 
mPFC of rats have no effect on the choices with different temporal 
discount [69]. Such difference between human and non-human 
subjects is not seen in the neuronal processing of effort or risk, 
which indicates that it is a special feature of time related choice, 
and also indicates a higher requirement of cognitive control in 
time related tasks compared to the other two. In summary, as 
has been mentioned, the temporal delay may bias the cost-benefit 
evaluation in two ways, the first of which is to directly diminish 
the subjective value of the outcome, and the second is to increase 
the mental cost, and as a result it will change the balance between 
cost and benefit. Furthermore, the lack of impact on temporal 
discounting tasks after lesion to mPFC or ACC might suggest 
that for rodents, mental cost is not strongly required for the time 
related tasks, which indicates that the evaluation of cost against 
benefit is different between human and non-human animals.  

The influence of risk on cost-benefit decision making

Another factor that could influence the decision making is the 
uncertainty of the outcome. Actually, most choices obtain a 
certain level of uncertainty. For instance, when a person chooses 
to invest stock A or stock B, then either choice may cause gain or 
loss, in spite of different probability. 

It has been proved that animals are risk-sensitive [88,89]. The 
early studies of this issue focused on foraging behavior and found 
that birds make riskier choice before migration period. Caraco 
et al provides the first conception of risk-sensitivity theory 
based on experimental examination of the foraging behavior 
of the yellow-eyed junco bird (a kind of migratory bird) [90]. 
In their experiments, birds need to choose between two food 
supply patterns with the same mean reward size: three seeds 
each time for certain versus six seeds or nothing with equal 
probability. They find that the choices of birds are affected by 
the environmental temperature. When the temperature is low, 
three seeds are not enough to maintain the body temperature 
and then birds are prone to choose more risky option in order 
to have a chance of getting six seeds and survive. However, when 
the temperature raises up to 19 C and three seeds are enough for 
survival, birds are risk aversive and prone to choose safe option 
[90]. They conclude in their optimal foraging theory that the 
bird’s preference for foraging strategy is in accordance with the 
environmental stochasticity. Consistently, Moore et al. suggests 
that migrants need to reach a higher body weight in order to 
survive the migration [91,92]. These studies prove that migratory 
birds are risk sensitive, and they adjust decision strategies to adapt 
to the changing environment. 

The later studies further investigate the neuronal mechanisms 
involved in choice with uncertainty, and accumulating evidence 
suggests the involvement of dopamine signal transmission [93-
95]. In a rodent version of Iowa Gambling Task (IGT), rats or 
mice show their choice by hopping into one of the goal arms with 
foods of different size and probability [96]. Using this behavior 
task Young et al find that the Dopamine Transporter (DAT) 

°
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knock-out mice more frequently choose arm A and B which 
suggests that they are risk-preferred [97].

But the role of dopamine in risk related decision seems to be 
complex. St. Onge et al. used a lever-pressing behavior task to 
investigate the risk attitude of rats. In their experiment, rats 
showed their choice between two options by pressing different 
levers. One lever delivers a certain reward of one food pallet 
while the other lever delivers a larger reward but the probability 
of receiving it decreases across the four trial blocks from 100% 
to 12.5% [98]. They find that systematically enhance the DA 
signaling by amphetamine or D1R and D2R agonists increases the 
preference for the larger but risky choice, while inhibition of DA 
signaling results in risk aversion like behaviors. In another similar 
task, rats were required to choose between a small, safe reward and 
a large reward possibly companied with foot shock [99]. Different 
from the former mentioned study, in this task, a similar level of 
amphetamine resulted in risk aversion [99]. The same group later 
found a non-uniformly distributed risk attitude among rats and 
according to which rats can be classified into three groups: risk-
seeking group, risk-neutral group and risk-aversive group, and the 
D1R mRNA level of the insular cortex of risk-seeking rats and 
the D2R mRNA level of the striatum of the risk-aversive rats are 
higher than the other two groups [100]. Moreover, they find the 
intraperitoneal injection of D2 receptor agonist bromocriptine 
increase the “safe” choice while D1R receptor agonist has no 
effect on risky choices [100]. Therefore, the dopamine signaling 
is important in risk related choice, but its role is still not clear yet. 
An explanation of this discrepancy is that different component 
of dopamine signals relates to different aspects of risky choices. 
Christopher et al first identifies that the phasic activity of 
dopaminergic neuron varies monotonically with the probability 
of the reward [101]. In their experiments, the monkey is given a 
reward after a particular visual signal. After extensive training the 
reward receiving no longer elicit a phasic dopamine signal since 
a solid conditional relationship between visual signal and reward 
has been generated. However, if the probability of the reward 
is modified to be less than 100%, the phasic response appears 
again. This electrical signal reaches maximal when the probability 
is 50% and it would not decay with the repetition of the test. 
Another explanation is that dopamine neurons of different 
brain regions may function differently. Recently, Zalocusky et al 
investigates the causal relationship between DA neuronal circuit 
and risk attitude for the first time by using optogenetics [101]. In 
their experiments, rats chose between a safe choice (50 μl sucrose) 
and a risky choice (25% of 170 μl sucrose and 75% 10 μl sucrose). 
In consistent with Setlow’s findings they also find a diversity of 
rats’ risk attitude. They further express channel rhodopsin on the 
D2R positive neurons of NAc and activates these neurons by blue 
light. As a result, the risky choice of the risk-seeking rat is inhibited 
after stimulation of this group of DA neurons while the choice of 
risk-aversive rat is not affected [101]. This study generates a causal 
relationship between a functional specified group of dopamine 
neurons and the risk aversive behavior. Other studies focusing 
on the circuit level mechanism of risk attitude also find that the 
dopaminergic neurons of VTA and its downstream targets are 
related to perception of uncertainty [102-104]. These studies 
suggest that similar to temporal delay, uncertainty also influences 

the subjective coding of the reward and in this way modifies the 
choice behavior.  

However other than influencing the valuation of reward, 
uncertainty can also influence the decision making in other 
ways. For instance, according to the current knowledge, most 
individuals, across species, are risk aversive, which means that 
they prefer safe choice than risky choice, and this is explained 
by loss aversion, which is an important feature in decision 
making under uncertainty from the perspective of economics 
[105]. It refers to the observation that people intend to pay a 
larger amount of money to avoid a potential loss. The main brain 
region that closely related to loss aversion is Amygdala, which as 
mentioned above, is important for emotion processing, especially 
fear, threat and anxiety [106-108], which are all sensations felt 
when people experience loss or a potential loss [109]. Lesion to 
amygdala induced a higher probability of engaging in gambles 
regardless of potential loss [110]. Consistently, fMRI studies 
show that the activity of amygdala is more strongly coupled to 
loss related decision [111,112]. Other studies find that Amygdala 
is also involved in decisions with uncertainty, even without a 
potential loss [113,114]. However, it could be interpreted as that 
the feature of “uncertainty” itself is enough to generate anxiety 
and stress. Recently, a circuit level study show that the ACC to 
BLA monosynaptic glutamatergic projection controls the innate 
fear response of rats [115]. In this study, the innate fear is induced 
by predator odor, and foot shock is used as a conditioned fear 
control. It is found that optogenetic inactivation of ACC to 
BLA projection enhanced freezing response to innate fear but 
not conditioned fear [115]. It would be interesting to evaluate 
the influence of this manipulation on choice behavior with 
uncertainty, because if the aversion to loss is rooted in innate 
fear, the choice behavior with uncertainty should be influenced 
by the optogenetic manipulation of this neuronal circuit. 

In brief summary, according to the current evidence, the factor 
of uncertainty not only influences evaluation of reward, but also 
cost. According to expected utility theory, the subjective value 
of the reward equals to the objective value multiplied by the 
probability, while prospect theory suggests that the subjective 
reward is valued by weighting objective value according to 
its probability. In the brain, the activity change of midbrain 
dopamine neurons according to uncertainty level may represent 
this probability discounting effect. But as mentioned above, each 
individual has its own risk attitude which varies largely, thus for a 
risk aversive person or animal, to overcome the natural inclination 
of choosing the safe choice and to diminish the anxiety induced 
by the uncertainty require a certain level of cognitive control, and 
the energy used for this purpose should be regarded as mental 
cost. Therefore, similar to the factor of time, uncertainty also 
influences the cost-benefit evaluation in two ways that it exerts 
impact on both reward coding and effort evaluation.

DISCUSSION

In this paper, we made a review of the neuronal process underlying 
some important factors that could influence the decision making, 
including time and risk. The relationship among these two factors 
has been discussed for decades but still without consensus yet. 
Multiple brain regions, including VTA, striatum, frontal cortex, 



5Glob J Lif Sci Biol Res, Vol. 8 Iss. 3 No: 1000011

Zhang X OPEN ACCESS Freely available online

and especially dopaminergic signaling among these regions are 
related to all the three factors and obviously influence decision 
making. DA receptor agonist, antagonist or DAT inhibitor is 
able to modify behavior either in the time or risk related choice 
tasks. The highly overlapping of the function of these different 
brain regions indicates a functional diversification of neurons in 
each brain region, and also it indicates that the interconnection 
among subgroup of neurons and the directed information flow 
within the neuronal circuit might play important roles. For 
instance, in a time related task, one need to sense and measure 
the temporal delay, overcome its own impatience, and evaluate 
the size of the objective reward and the discounted reward, and 
each of them may be processed by different neurons. In addition, 
analyzing time and risk have some shared features, especially 
that they all require prediction and evaluation of the outcome 
of certain operant behavior which is consistent with the findings 
that VTA activity is detected in either behavior tasks. Currently, 
the cost-benefit evaluation is believed to be a useful framework in 
analyzing decision making. According to the existing evidence, 
we suggest a neuronal model under this framework (Figure 1). 

CONCLUSION 

Under this framework, the behavior is chosen after evaluating the 
required cost against potential benefit. The three factors, time, 
risk and effort influence cost and benefit in different ways. In 
time related choice, the subjective coding of the potential reward 
is discounted by the temporal delay, and meantime in order to 
overcome the natural preference towards immediate reward, 
certain level of mental effort is required so time also influence 
the cost evaluation. Similarly, the uncertainty diminishes the 
valuation of the outcome and makes it a less preferred choice. 
However, if an overall gain can only be achieved through making 
riskier choice, then a risk aversive person must overcome the 

tendency towards safe choice, which also requires cognitive 
control and should be regarded as mental cost. Therefore, we 
suggest that in a cost-benefit analysis, the temporal delay and 
uncertainty should not be only regarded as constituents of cost 
or be treated as parallel to cost, instead, they have impacts on 
both cost and benefit evaluation. And then a comparison of 
cost and benefit is carried out to decide whether to initiate an 
approaching action. 
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