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Abstract

The modified extended tanh method is one of most effective alge-
braic method for obtaining exact solutions of nonlinear partial differ-
ential equations.In this paper,we seek exact solutions of the modified
Benjamin-Bona-Mahony(MBBM)equation and the Zakharov-Kuzetsov(ZK)equation.
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1 Introduction

Nonlinear evolution equations have a major role in various scientific and engi-
neering fields, such as fluid mechanics, plasma physics, optical fibers, solid state
physics, chemical kinematics, chemical physics and geochemistry. Nonlinear
wave phenomena of dispersion, dissipation, diffusion, reaction and convection
are very important in nonlinear wave equations. In recent years, quite a few
methods for obtaining explicit traveling and solitary wave solutions of nonlin-
ear evolution equations have been proposed. A variety of powerful methods,
such as,tanh-sech method [1, 2, 3],extended tanh method [4, 5, 6], hyperbolic
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function method [7], sine-cosine method [8, 9, 10], Jacobi elliptic function ex-
pansion method [11], F-expansion method [12] ,and the first integral method
[13, 14].
The modified Benjamin-Bona-Mahony(MBBM)equation [18] is in the form,

ut + ux + au2ux + buxxt = 0,

and the Zakharov-Kuzetsov(ZK)is in the form

ut + auux + b(uxx + uyy)x = 0.

The ZK equation, presented in [15], governs the behavior of weakly nonlin-
ear ion-acoustic waves in a plasma comprising cold ions and hot isothermal
electrons in the presence of a uniform magnetic field [16, 17]. The ZK equa-
tion, which is a more isotropic two-dimensional, was first derived for describing
weakly nonlinear ion-acoustic waves in a strongly magnetized lossless plasma
in two dimensions [15]. The aim of this paper is to find exact solutions of the
MBBM equation and the ZK equation by modified extended tanh method with
the Riccati equation.

2 Modified extended tanh method with the

Riccati equation

Let us investigated these methods.For given a nonlinear equation

F (u, ux, uy, ut, uxx, uxy, uxt, ...) = 0, (1)

when we look for its traveling wave solutions, the first step is to introduce the
wave transformation u(x, y, t) = U(ξ), ξ = x+ y + λt and change Eq.(1) to
an ordinary differential equation(ODE)

H(U, U ′, U ′′, U ′′′, ...) = 0. (2)

The next crucial step is to introduce a new variable φ = φ(ξ), which is a
solution of the Riccati equation

dφ

dξ
= k + φ2. (3)

The modified extended tanh method admits the use of the finite expansion:

u(x, y, t) = U(ξ) =
m
∑

i=0

aiφ
i(ξ) +

m
∑

i=1

biφ
−i(ξ), (4)
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where the positive integer m is usually obtained by balancing the highest-order
linear term with the nonlinear terms in Eq.(2). Substituting Eq.(3) and Eq.(4)
into Eq.(2) and then setting zero all coefficients of φi(ξ), we can obtain a system
of algebraic equations with respect to the constants k, λ, a0, ..., am, b1, ..., bm.
Then we can determine the constants k, λ, a0, ..., am, b1, ..., bm. The Riccati
equation (3) has the general solutions:
If k < 0 then

φ(ξ) = −
√
−k tanh(

√
−kξ), (5)

φ(ξ) = −
√
−k coth(

√
−kξ).

If k = 0 then

φ(ξ) = −
1

ξ
. (6)

If k > 0 then
φ(ξ) =

√
k tan(

√
kξ), (7)

φ(ξ) = −
√
k cot(

√
kξ).

Therefore,by the sign test of k can be obtained exact solutions of Eq.(1).

3 Application

3.1.The modified Benjamin-Bona-Mahony(MBBM)equation
Let us consider the MBBM equation [18]

ut + ux + au2ux + buxxt = 0, (8)

where a and b are positive constants. Using the wave variable u(x, t) =
U(ξ), ξ = x+ λt carries the PDE (8) into the ODE

λU ′ + U ′ + aU2U ′ + bλU ′′′ = 0, (9)

where by integrating Eq.(16) and neglecting the constant of integration we
obtain

(λ+ 1)U +
a

3
U3 + bλU ′′ = 0. (10)

Balancing U ′′ with U3 in Eq.(10) give

m+ 2 = 3m,

so that m = 1.
The modified extended tanh method (4) admits the use of the finite expansion

U(ξ) = a0 + a1φ(ξ) +
b1

φ(ξ)
. (11)
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Substituting (11) into Eq.(10), making use of Eq.(3),collecting the coefficients
of φi(ξ) − 3 ≤ i ≤ 3, we obtain:

Coefficient of φ3: 1

3
aa3

1
+ 2bλa1.

Coefficient of φ2: aa0a
2

1
.

Coefficient of φ1: ab1a
2

1
+ 2bλka1 + (λ+ 1)a1 + aa2

0
a1.

Coefficient of φ0: 2ab1a0a1 + (λ+ 1)a0 +
1

3
aa3

0
.

Coefficient of φ−1: aa1b
2

1
+ aa2

0
b1 + (λ+ 1)b1 + 2bλb1k.

Coefficient of φ−2: aa0b
2

1
.

Coefficient of φ−3: 2bλb1k
2 + 1

3
ab3

1
.

Setting these coefficients equal to zero, and solving the resulting system, by
using Maple, we find the following set of solutions:
Case A:

k =
6b− aa2

1

2aa21b
, λ = −

aa2
1

6b
, a0 = b1 = 0, (12)

where a1 is an arbitrary constant.
If 6b < aa2

1
, then k < 0,Substituting (12) into (11) and using (5) the solution

of Eq.(8) is given by:

u1(x, t) = −

√

aa21 − 6b

2ab
tanh(

1

a1

√

aa21 − 6b

2ab
(x−

aa2
1

6b
t)).

If 6b > aa2
1
, then k > 0,Substituting (12) into (11) and using (7) the solution

of Eq.(8) is given by:

u2(x, t) =

√

6b− aa21

2ab
tan(

1

a1

√

6b− aa21

2ab
(x−

aa2
1

6b
t)).

Case B:

k =
aa2

1
− 6b

4aa21b
, λ = −

aa2
1

6b
, a0 = 0, b1 =

aa2
1
− 6b

4aa1b
, (13)

where a1 is an arbitrary constant.
If 6b < aa2

1
, then k > 0,Substituting (13) into (11) and using (7) the solution

of Eq.(8) is given by:

u3(x, t) =

√

aa21 − 6b

4ab
[tan(

1

a1

√

aa21 − 6b

4ab
(x−

aa2
1

6b
t))

+cot(
1

a1

√

aa21 − 6b

4ab
(x−

aa2
1

6b
t))].
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If 6b > aa2
1
, then k < 0,Substituting (13) into (11) and using (5) the solution

of Eq.(8) is given by:

u4(x, t) =

√

6b− aa21

4ab
[coth(

1

a1

√

6b− aa21

4ab
(x−

aa2
1

6b
t))

−tanh(
1

a1

√

6b− aa21

4ab
(x−

aa2
1

6b
t))].

Case C:

k =
6b− aa2

1

8aa21b
, λ = −

aa2
1

6b
, a0 = 0, b1 =

aa2
1
− 6b

8aa1b
, (14)

where a1 is an arbitrary constant.
If 6b < aa2

1
, then k < 0,Substituting (14) into (11) and using (5) the solution

of Eq.(8) is given by:

u5(x, t) = −

√

aa21 − 6b

8ab
[tanh(

1

a1

√

aa21 − 6b

8ab
(x−

aa2
1

6b
t))

+coth(
1

a1

√

aa21 − 6b

8ab
(x−

aa2
1

6b
t))].

If 6b > aa2
1
, then k > 0,Substituting (14) into (11) and using (7) the solution

of Eq.(8) is given by:

u6(x, t) =

√

6b− aa21

8ab
[tan(

1

a1

√

6b− aa21

8ab
(x−

aa2
1

6b
t))

−cot(
1

a1

√

6b− aa21

8ab
(x−

aa2
1

6b
t))].

3.2.The Zakharov-Kuzetsov(ZK)equation
In this section we study the ZK equation

ut + auux + b(uxx + uyy)x = 0. (15)

Using the wave variable u(x, t) = U(ξ), ξ = x+ y + λt carries the PDE (15)
into the ODE

λU ′ +
a

2
(U2)′ + 2bU ′′′ = 0, (16)

where by integrating Eq.(16) and neglecting the constant of integration we
obtain

λU +
a

2
U2 + 2bU ′′ = 0. (17)
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Balancing U ′′ with U2 in Eq.(10) give

m+ 2 = 2m,

so that m = 2.
The modified extended tanh method (4) admits the use of the finite expansion

U(ξ) = a0 + a1φ(ξ) + a2φ
2(ξ) +

b1

φ(ξ)
+

b2

φ2(ξ)
. (18)

Substituting (18) into Eq.(17), making use of Eq.(3),collecting the coefficients
of φi(ξ) − 4 ≤ i ≤ 4, we obtain:

Coefficient of φ4: 1

2
aa2

2
+ 12ba2.

Coefficient of φ3: 4ba1 + aa1a2.

Coefficient of φ2: λa2 + 16ba2k + aa0a2 +
1

2
aa2

1
.

Coefficient of φ1: λa1 + 4kba1 + aa0a1 + ab1a2.

Coefficient of φ0: ab1a1 + ab2a2 +
1

2
aa2

0
+ λa0 + 4bb2 + 4k2ba2.

Coefficient of φ−1: 4bb1k + aa1b2 + ab1a0 + λb1.

Coefficient of φ−2: λb2 + 16bb2k + ab2a0 +
1

2
ab2

1
.

Coefficient of φ−3: 4bb1k
2 + ab1b2.

Coefficient of φ−4: 12bb2k
2 + 1

2
ab2

2
.

Setting these coefficients equal to zero, and solving the resulting system, by
using Maple, we find the following set of solutions:
Case A:

k =
λ

8b
, a0 = −

3λ

a
, a1 = 0, a2 = −

24b

a
, b1 = b2 = 0, (19)

where λ is an arbitrary constant.
If λ

b
< 0 then k < 0,Substituting (19) into (18) and using (5) the solution of

the ZK is given by:

u1(x, y, t) = −
3λ

a
sech2(

1

2

√

−
λ

2b
(x+ y + λt)).

If λ
b
> 0 then k > 0,Substituting (19) into (18) and using (7) the solution of

the ZK is given by:

u2(x, y, t) = −
3λ

a
sec2(

1

2

√

λ

2b
(x+ y + λt)).

Case B:

k = −
λ

8b
, a0 =

λ

a
, a1 = 0, a2 = −

24b

a
, b1 = b2 = 0, (20)
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where λ is an arbitrary constant.
If λ

b
< 0 then k > 0,Substituting (20) into (18) and using (7) the solution of

the ZK is given by:

u3(x, y, t) =
λ

a
(1 + 3tan2(

1

2

√

−
λ

2b
(x+ y + λt))).

If λ
b
> 0 then k < 0,Substituting (20) into (18) and using (5) the solution of

the ZK is given by:

u4(x, y, t) =
λ

a
(1− 3tanh2(

1

2

√

λ

2b
(x+ y + λt))).

Case C:

k =
λ

32b
, a0 = −

3λ

2a
, a1 = 0, a2 = −

24b

a
, b1 = 0, b2 = −

3λ2

128ab
, (21)

where λ is an arbitrary constant.
If λ

b
< 0 then k < 0,Substituting (21) into (18) and using (5) the solution of

the ZK is given by:

u5(x, y, t) = −
3λ

2a
[1−

1

2
tanh2(

1

4

√

−
λ

2b
(x+y+λt))−

1

2
coth2(

1

4

√

−
λ

2b
(x+y+λt))].

If λ
b
> 0 then k > 0,Substituting (21) into (18) and using (7) the solution of

the ZK is given by:

u6(x, y, t) = −
3λ

2a
[1 +

1

2
tan2(

1

4

√

λ

2b
(x+ y + λt)) +

1

2
cot2(

1

4

√

λ

2b
(x+ y + λt))].

Case D:

k = −
λ

32b
, a0 = −

λ

2a
, a1 = 0, a2 = −

24b

a
, b1 = 0, b2 = −

3λ2

128ab
, (22)

where λ is an arbitrary constant.
If λ

b
< 0 then k > 0,Substituting (22) into (18) and using (7) the solution of

the ZK is given by:

u7(x, y, t) = −
λ

2a
[1−

3

2
tan2(

1

4

√

−
λ

2b
(x+y+λt))−

3

2
cot2(

1

4

√

−
λ

2b
(x+y+λt))].

If λ
b
> 0 then k < 0,Substituting (22) into (18) and using (5) the solution of

the ZK is given by:

u8(x, y, t) = −
λ

2a
[1+

3

2
tanh2(

1

4

√

λ

2b
(x+y+λt))+

3

2
coth2(

1

4

√

λ

2b
(x+y+λt))].
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