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Abstract

In this paper, some properties of matrices over commutative semirings

are researched deeply. We extend the theorem about invertible matrix

and show a necessary condition that a matrix is invertible.And we dis-

cuss in n-dimensional L-semilinear space Vn every vector of Vn can be

uniquely represented by a linear combination of any basis of Vn. On

the other hand, we show the connection between two bases of Vn with

the transition matrix and prove an inequality in case that the rank of

the matrix is redefined over commutative semirings. We give the proof

that a set of linearly independent vectors is still linearly independent

under semilinear transformation. We prove that some theorems of the

determinant of a matrix still exist for the permanent, but some of the

theorems do not. We show the necessary and sufficient condition that

the permanent of an invertible matrix is zero.
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1 Introduction

The study of semilinear structures over commutative semirings has a long
history. In the theory of matrices over semirings, an invertible matrix is an
important type of matrices. In 1984, Reutenauer and Straubing researched the
invertible matrices over commutative semirings [9]. Moreover, in 2011, Shu and
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Wang showed some necessary and sufficient conditions that each basis has the
same number of elements over commutative zerosumfree semirings and proved
that a set of vectors is a basis if and only if they are standard orthogonal
[4]. In 2015, Zhang Houjun and Chu Maoquan researched the dimension of
semilinear space over commutative semirings and got a series of results [7].

This paper is organized as follows. Some properties of matrices over com-
mutative semirings are researched deeply. Firstly we extend the theorem about
invertible matrix and show a necessary condition that a matrix is invertible.
On the other hand, we show the connection between two bases of Vn with the
transition matrix and prove an inequality in case that the rank of the matrix
is redefined over commutative semirings. Then we prove that some theorems
of the determinant of a matrix still exist for the permanent, but some of the
theorems don’t. We show the necessary and sufficient condition that the per-
manent of an invertible matrix is zero.

2 Preliminary Notes

Definition 2.1[1] A semiring L =< L,+, ·, 0, 1 > is an algebraic structure
with the following properties:

(1) (L,+, 0) is a commutative monoid,

(2) (L, ·, 1) is a monoid,

(3) r · (a+ b) = r · a+ r · b and (a+ b) · r = a · r+ b · r hold for all a, b, r ∈ L,

(4) r · 0 = 0 · r = 0 hold for all r ∈ L,

(4) 0 6= 1,

A semiring L is commutative if r · r′ = r′ · r for all r, r′ ∈ L.

Natural number and the set of nonnegative real number with the usual
operations of addition and multiplication of real numbers are commutative
semirings.

Definition 2.2[1] Let L =< L,+, ·, 0, 1 > be a semiring and let A =<

A,+A, 0A > be a commutative monoid. If ∗ :L × A → A is an external
multiplication such that

(1) (r · r′) ∗ a = r · (r′ ∗ a),

(2) r ∗ (a+A a′) = r ∗ a +A r ∗ a′,

(3) (r + r′) ∗ a = r ∗ a+A r′ ∗ a,

(4) 1 ∗ a = a,

(5) r ∗ 0A = 0 ∗ a = 0,

for all r, r′ ∈ L and a, a′ ∈ A then < L,+, ·, 0, 1, ∗, A,+A, 0A > is called a left
L-semimodule. The definition of a right L-semimodule is analogous, where the
external multiplication is defined as a function L× A → A.

The following definition is a general version of a semilinear space in [10]:
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Let L =< L,+, ·, 0, 1 > be a semiring. Then a semimodule over L is called
an L-semilinear space.

Note that a semimodule stands for a left L-semimodule and right L-semimodule
as in [10]. Elements of an L-semilinear space will be called vectors and ele-
ments of a semiring scalars. The former will be denoted by hold letters to
distinguish them from scalars.

Without loss of generality, in what follows, we consider left L-semimodules
for convenience of notation. Then we can construct an L-semilinear space as
follows.

Natural number Z0 =< Z0,+, ·, 0, 1 > is a semiring. For ∀n ≥ 1, let
Vn(Z

0) = {(a1, a2, · · ·, an)
T : ai ∈ Z0, i = 1, · · ·, n.},

x= (x1, x2, · · ·, xn)
T ,y= (y1, y2, · · ·, yn)

T ∈ Vn(Z
0), r ∈ Z0,

definite x+y= (x1 + y1, · · ·, xn + yn)
T ,r ∗ x= (r · x1, r · x2, · · ·, r · xn)

T . Then
Vn(Z

0) is a semilinear space and 0n×1 = (0, 0, · · ·, 0)T .

Definition 2.3[5] Let Vn be an L-semilinear space. The expression where
λ1, λ2, · · ·, λn ∈ L are scalars is called a linear combination of vectors α1,α2,· ·
·,αn.

If the vector x can be expressed as a linear combination by the vector
set α1,α2,· · ·,αn, then we say vector x can be expressed by the vector set
α1,α2,· · ·,αn in a linear form.

Definition 2.4[5] In an L-semilinear space, vectors α1,α2,· · ·,αn(n ≥ 2) are
linearly independent if none of them can be represented by a linear combina-
tion of the others. Otherwise, we say that vectors α1,α2,· · ·,αn are linearly
dependent.

In semilinear space Vn, let α1,α2,· · ·,αn and β1,β2,· · ·,βm be the two
sets of vectors.If every αi ∈ n can be represented by a linear combination of
β1,β2,· · ·,βm and every βj ∈ m can be represented by a linear combination of
α1,α2,· · ·,αn, then the two sets of vectors are said to be equivalent.

If a part of vector α1,α2,· · ·,αn is linearly independent, then the vector set
α1,α2,· · ·,αn is linearly independent. If the vector set α1,α2,· · ·,αn is linearly
independent, then any part of it is linearly independent.

Definition 2.5[5] A nonempty subset G of an L-semilinear space is called a
set of generators if every element of the L-semilinear space is a linear combi-
nation of elements in G. Let S be a set of generators of L-semilinear space Vn

. Then we put Vn =< S >.

Definition 2.6[1] Suppose Vn is a semilinear space, a set of linearly indepen-
dent generators is called the basis of Vn.

Obviously, Vn is a semilinear space with a basis e1,e2,· · ·,en,where
e1 = (1, 0, · · ·, 0)T ,e2 = (0, 1, · · ·, 0)T ,· · ·,en = (0, 0, · · ·, 1)T .

Note that in [6], we call e1,e2,· · ·en is the standard basis of semilinear space.
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Different from the linear space, in general, the cardinality of basis is not
unique.

LetMm×n(L) be the set of allm×nmatrices over a semiring < L,+, ·, 0, 1 >.
In particular, let for Mn(L) = Mn×n(L).Given A = (aij)m×n, B = (bij)m×n ∈
Mm×n(L) and C = (cij)n×l ∈ Mn×l(L), we define that A+B = (aij + bij)m×n,

AC = (
n
∑

k=1

aik · ckj)m×l,λA = (λaij)m×n, ∀λ ∈ L.

Definition 2.7[3] If each basis of an L-semilinear space Vn has the same
number of elements, then we call the number of the vectors in each basis a
dimension of Vn , in symbols dim(Vn).

Definition 2.8[7] A matrix A ∈ Mn(L) is called right(left) invertible if there
is a matrix B ∈ Mn(L) such that AB = In(BA = In). If the matrix A s not
only left invertible but also right invertible, then we call A is invertible.

Definition 2.9[8] If A ∈ Mn(L), σ =

(

1 2 · · · n

j1 j2 · · · jn

)

,

then define the positive and negative determinants as |A|+ =
∑

σ=even

a1,j1a2,j2 ·

· · an,jn and |A|− =
∑

σ=odd

a1,j1a2,j2 · · · an,jn. We note that the permanent of

A is given by per(A) = |A|+ + |A|− and the determinant of A is given by
det(A) = |A|+ − |A|−.

Definition 2.10[4] Let Vn be a semilinear space on semirings, x= (x1, x2, · ·
·, xn)

T ,y= (y1, y2, · · ·, yn)
T , defined (x,y) =x1y1+x2y2+ · · ·+xnyn is the inner

product of x and y.

Definition 2.11[7] Let x and y be the two vectors of the semilinear space if
(x,y) =0, then x and y are orthogonal to each other.

Definition 2.12[7] Let {x1,x2,· · ·,xn} be the basis of the semilinear space
Vn, if x1,x2,· · ·,xn are all orthogonal to each other, then {x1,x2,· · ·,xn} is the
orthogonal basis of Vn.

Let {x1,x2,· · ·,xn} and {y1,y2,· · ·,ym} be the two bases of Vn, and each
element of x1,x2,· · ·,xn is linear combination of y1,y2,· · ·,ym,namely















x1 = a11y1 + a12y2 + · · ·+ a1mym

x2 = a21y1 + a22y2 + · · ·+ a2mym

· · ·
xn = an1y1 + an2y2 + · · ·+ anmym

or (x1,x2,· · ·,xn)= (y1,y2,· · ·,ym)A, A = (aij)m×n ∈ Mm×n(L), then matrix
A is called a transition matrix from {y1,y2,· · ·,ym} to {x1,x2,· · ·,xn}, The rank
of matrix A ∈ Mm×n(L) is k if there exist B ∈ Mm×k(L) and C ∈ Mk×n(L)
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such that A = BC and k is the least positive integer . Then we have f(A) = k

in symbols.

Note that if A ∈ Mn(L), then f(A) ≤ n.

Definition 2.13[7] A transformation ϕ on semilinear space Vn is called semi-
linear transformation, if for any vector x,y∈ Vn, k ∈ L, we have ϕ(x + y)=
ϕ(x)+ϕ(y), ϕ(kx)= kϕ(x).

Let x1,x2,· · ·,xn be a set of vectors of semilinear space Vn, ϕ is a semilinear
transformation of Vn, then if















ϕ(x1) = a11x1 + a12x2 + · · ·+ a1nxn

ϕ(x2) = a21x1 + a22x2 + · · ·+ a2nxn

· · ·
ϕ(xn) = an1x1 + an2x2 + · · ·+ annxn

or ϕ(x1,x2,· · ·,xn)= (x1,x2,· · ·,xm)A,A = (aij)m×n ∈ Mm×n(L),then we call
A is the matrix of transformation ϕ on x1,x2,· · ·,xn.

Definition 2.14[7] Let L be a commutative semiring and A,B ∈ Mn(L), A is
similar to B if there is an invertible matrix X ∈ Mn(L) such that A = X−1BX.

3 Main Results

These are the main results of the paper.

Lemma 3.1[9] Let L be a commutative semiring and A,B ∈ Mn(L), if AB =
In, then BA = In.

Lemma 3.2[7] Let Vn be a semilinear space, then dim(Vn) = n if and only
if every vector of Vn can be uniquely represented by a linear combination of
standard orthogonal basis.

Theorem 3.1 Let L be a commutative semiring and A1, A2, · · ·, An ∈ Mn(L),
if A1A2 · · · An = In, then A1, A2, · · ·, An are invertible matrices.

Proof. Since A1A2 · · · An = In, A1 is invertible.

By Lemma 1, we have A1A2 · · ·An = A2 · · ·AnA1 = In,then A2 is invertible.

Similarly, A3, A4, · · ·, An are invertible matrices. �

Note that A1A2 · · ·An = A2 · · · AnA1 = · · · = AnA1 · · ·An−1 = In.

Theorem 3.2 Let Vn be a semilinear space and dim(Vn) = n. If {α1,α2,· ·
·,αn} is the basis of semilinear space Vn, then every vector of Vn can be uniquely
represented by a linear combination of α1,α2,· · ·,αn
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Proof. Let {e1,e2,· · ·,en} be standard orthogonal basis of semilinear space
Vn.

Since {α1,α2,···,αn} is the basis of Vn, there is a matrix A = (aij) ∈ Mn(L)
such that (e1,e2,· · ·,en) = (α1,α2,· · ·,αn)A.

From Lemma 2, we know that A is unique and invertible.

For all α∈ Vn, there exists elements k1, k2, · · ·, kn ∈ L such that

α= (e1,e2,· · ·,en)(k1, k2, · · ·, kn)
T .

Then we have α= (e1,e2,· · ·,en)(k1, k2, · · ·, kn)
T = (α1,α2,· · ·,αn)A(k1, k2, · ·

·, kn)
T .

Therefore, every vector of Vn can be uniquely represented by a linear com-
bination of α1,α2,· · ·,αn. �

Corollary Let Vn be a semilinear space and dim(Vn) = n. If {α1,α2,· · ·,αn}
and {β1,β2,···,βn} are the bases of Vn, then {α1,α2,···,αn} and {β1,β2,···,βn}
are equivalent.

Theorem 3.3 Let Vn be a semilinear space and dim(Vn) = n. If {α1,α2,· ·
·,αn} and {β1,β2,· · ·,βn} are the bases of Vn and A = (aij) ∈ Mn(L) such that
(α1,α2,· · ·,αn) = (β1,β2,· · ·,βn)A, then A is invertible.

Proof. Let {e1,e2,· · ·,en} be standard orthogonal basis of semilinear space
Vn.

Since {α1,α2,· · ·,αn} and {β1,β2,· · ·,βn} are the bases of Vn, there are
matrices B,C ∈ Mn(L) such that

(e1,e2,· · ·,en) = (α1,α2,· · ·,αn)B and (β1,β2,· · ·,βn) = (e1,e2,· · ·,en)C.

Then we have

(e1,e2,· · ·,en) = (α1,α2,· · ·,αn)B = (β1,β2,· · ·,βn)AB = (e1,e2,· · ·,en)CAB.

From Theorem 1, we know that A is invertible. �

Theorem 3.4 Let L be a commutative semiring and A ∈ Mn(L),if A is
invertible, then f(A) = n.

Proof. Since A is invertible, there exists matrix B ∈ Mn(L) such that
AB = In.

Assume that k ≤ n, then there exists matrix C ∈ Mn×k(L) and D ∈
Mk×n(L) such that A = CD.

Therefore, CDB = In.

If k < n, we add n− k columns 0 to C and add n− k rows 0 to DB. Then

we have
(

C 0
)

(

DB

0

)

= In.

From Definition 8 and Lemma 2, both
(

C 0
)

and

(

DB

0

)

are invertible

matrices and
(

C 0
)

(

DB

0

)

= In.
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On the other hand, we know that
(

C 0
)

(

DB

0

)

=

(

DBC 0

0 0

)

6= In.

Therefore, k = n.

Consequently,f(A) = n. �

Lemma 3.3[9] Let A ∈ Mn(L).If A is invertible, then the column vectors of
A are linearly independent.

Theorem 3.5 Let Vn be a semilinear space, {α1,α2, · · ·,αm} is the basis of
Vn. If there is {β1,β2, · · ·,βr} and a matrix A, such that (β1,β2, · · ·,βr)A =
(α1,α2, · · ·,αm) and f(A) = n, then {β1,β2, · · ·,βr} is a basis of Vn.

Proof. f(A) = n and there is B ∈ Mr×n(L) and C ∈ Mn×m(L), s.t.
A = BC.

(β1,β2, · · ·,βr)A = (β1,β2, · · ·,βr)BC = (α1,α2, · · ·,αm)

Let γl =
r
∑

j=1

bjlβj , l ∈ 1, 2, · · ·, n, {e1, e2, · · ·, em} is the standard basis of

Vn. Since (α1,α2, · · ·,αm) = (γ1,γ2, · · ·,γn)C, {γ1,γ2, · · ·,γn} is a set of
generators of Vn.

Therefore, ei can be represented by a linear combination of γ1,γ2, · · ·,γn,

i = 1, 2, · · ·, n. In = (γ1,γ2, · · ·,γn)







λ11 · · · λ1n
...

. . .
...

λn1 · · · λnn






, then (γ1,γ2, · · ·,γn) is

right invertible.

From Lemma 1 we know that (γ1,γ2, · · ·,γn) is invertible. According to
Lemma 3, {γ1,γ2, · · ·,γn} is a basis of Vn. (γ1,γ2, · · ·,γn) = (β1,β2, · · ·,βr)B,
then {β1,β2, · · ·,βr} is a set of generators of Vn.

In the same way, In = (β1,β2, · · ·,βr)







λ11 · · · λ1n
...

. . .
...

λr1 · · · λrn






, then (β1,β2, · ·

·,βr) is right invertible. From Lemma 1 we know that (β1,β2, · · ·,βr) is
invertible. According to Lemma 3, {β1,β2, · · ·,βr} is a basis of Vn. �

Corollary Let Vn be a semilinear space, {α1,α2, · · ·,αm} is the basis of Vn.
If there are {β1,β2, · · ·,βr} and a matrix A, such that (β1,β2, · · ·,βr)A =
(α1,α2, · · ·,αm) and A is invertible, then {β1,β2, · · ·,βr} is a basis of Vn.

Theorem 3.6 Suppose A = (aij) ∈ Mm×n(L) and B = (bij) ∈ Mn×s(L),
then f(AB) ≤ min{f(A), f(B)}.

Proof. Let f(AB) = k, f(A) = a and f(B) = b. Then A = A1A2 with
A1 = (a1ij) ∈ Mm×a(L), A2 = (a2ij) ∈ Ma×n(L). B = B1B2 with B1 = (b1ij) ∈
Mn×b(L), B2 = (b2ij) ∈ Mb×s(L).
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Then AB = A1A2B1B2 = CB2 = A1D, with C = (cij) ∈ Mm×b(L),
B2 = (b2ij) ∈ Mb×s(L), A1 = (a1ij) ∈ Mm×a(L) and D = (dij) ∈ Ma×s(L). From
Definition 13, k ≤ b and k ≤ a. Therefore, f(AB) ≤ min{f(A), f(B)}. �

Theorem 3.7 ϕ is a semilinear transformation on semilinear space Vn and
ϕ−1(0) = 0, then {α1,α2, · · ·,αl} is linearly independent if and only if
{ϕ(α1), ϕ(α2), · · ·, ϕ(αl)} is linearly independent.

Proof. (⇒) Let k1ϕ(α1) + k2ϕ(α2) + · · · + klϕ(αl) = 0. Then from
Definition 13, we have ϕ(k1α1 + k2α2 + · · ·+ klαl) = 0.

Since ϕ−1(0) = 0, k1α1 + k2α2 + · · ·+ klαl = 0.
Since {α1,α2, · · ·,αl} is linearly independent, k1 = k2 = · · · = kl = 0.

Then we have {ϕ(α1), ϕ(α2), · · ·, ϕ(αl)} is linearly independent.
(⇐) Let k1α1+k2α2+ · · ·+klαl = 0, then ϕ(k1α1+k2α2+ · · ·+klαl) =

k1ϕ(α1) + k2ϕ(α2) + · · ·+ klϕ(αl) = 0.
Since {ϕ(α1), ϕ(α2), · · ·, ϕ(αl)} is linearly independent, we have k1 = k2 =

· · · = kl = 0. Therefore, {α1,α2, · · ·,αl} is linearly independent. �

Lemma 3.4[8] If A ∈ Mn(L) and A has a zero row or column, then |A|+ =
|A|− = 0.

Lemma 3.5[8] If A ∈ Mn(L), |A|
+ = |AT |+ and |A|− = |AT |−.

Lemma 3.6[8] If A ∈ Mn(L) and suppose that B is obtained from A by
interchanging two rows (columns), then |A|+ = |B|− and A|− = |B|+.

Lemma 3.7[8] If A ∈ Mn(L) and A has two equal rows (columns), then
|A|+ = |A|−.

Lemma 3.8[8] Suppose A = (a1,a2, · · ·,an),
(i) If B = (a1, · · ·,ar−1, γar,ar+1, · · ·,an), then |B|± = γ|A|±.

(ii) If C =















aT
1
...

γaT
r
...
aT
n















, then |C|± = γ|A|±.

Lemma 3.9[8] If A = (a1,a2, · · ·,an) and ak = bk + ck, k = 1, · · ·, n, then
|A|± = |a1, · · ·,ak−1, bk,ak+1, · · ·,an|

± + |a1, · · ·,ak−1, ck,ak+1, · · ·,an|
±.

Lemma 3.10[8] If M =

(

A C

0 D

)

, then

(i)|M |+ = |A|+|D|+ + |A|−|D|−,
(ii)|M |− = |A|+|D|− + |A|−|D|+.

Lemma 3.11[8] If A,B ∈ Mn(L), then |AB|+ + |A|+|B|− + |A|−|B|+ =
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|AB|− + |A|+|B|+ + |A|−|B|−.

Theorem 3.8 If A is invertible, then per(A) = 0 if and only if |A|+|A−1| =
1
2
.
Proof. (⇒) From Lemma 11, let B be A−1, then we have

1 + |A|+|A−1|− − |A|+|A−1|+ = |A|−|A−1|− − |A|−|A−1|+,

that is 1 + |A|+(|A−1|− − |A−1|+) = |A|−(|A−1|− − |A−1|+),
so (|A|− − |A|+)(|A−1|− − |A−1|+) = 1.
Since per(A) = 0 if and only if |A|+ = −|A|−, that is |A|+(|A−1|+ −

|A−1|−) = 1
2
. So |A|+|A−1| = 1

2
.

(⇐) By contrary, if |A|+|A−1| = 1
2
, then |A|+ = −|A|−.

And we have per(A) = 0. �

Theorem 3.9 If A ∈ Mn(L), then per(A) = per(AT ).
Proof. per(A) = |A|+ + |A|− and per(AT ) = |AT |+ + |AT |−.
From Lemma 5 we know |A|++|A|− = |AT |++|AT |−, so per(A) = per(AT ).

�

Theorem 3.10 If A,B ∈ Mn(L) and B is obtained from A by interchanging
two rows (columns), then per(A) = per(B).

Proof. Since per(A) = |A|+ + |A|− and per(B) = |B|+ + |B|−,
we know |B|+ = |A|− and |B|− = |A|+ from Lemma 6. So per(A) =

per(B). �

Theorem 3.11 Suppose A = (a1,a2, · · ·,an),
(i)If B = (a1, · · ·,ar−1, γar,ar+1, · · ·,an), then per(B) = γper(A).

(ii) If C =















aT
1
...

γaT
r
...
aT
n















, then per(C) = γper(A).

Proof. (i)From Lemma 8, we know |B|+ = γ|A|+ and |B|− = γ|A|−,
then per(B) = |B|+ + |B|− = γper(A).
(ii)In a similar way, from Lemma 8 we have per(C) = γper(A). �

Theorem 3.12 If A = (a1,a2, · · ·,an), and ak = bk + ck, k = 1, · · ·, n, then
per(A) = per(a1, · · ·,ak−1, bk,ak+1, · · ·,an)+per(a1, · · ·,ak−1, ck,ak+1, · · ·,an).

Proof. From Lemma 4 we know that |A|+ = |a1, · · ·,ak−1, bk,ak+1, · ·
·,an|

+ + |a1, · · ·,ak−1, ck,ak+1, · · ·,an|
+,

|A|− = |a1, · · ·,ak−1, bk,ak+1, · · ·,an|
− + |a1, · · ·,ak−1, ck,ak+1, · · ·,an|

−.
Then we have per(A) = per(a1, · · ·,ak−1, bk,ak+1, · · ·,an) + per(a1, · ·

·,ak−1, ck,ak+1, · · ·,an).
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Note that (i)If A = (a1, · · ·,ai, · · ·,aj, · · ·,an), B = (a1, · · ·,ai, · · ·,aj +
kai, · · ·,an), k ∈ R, then different from det(A) = det(B).per(A) 6= per(B).

(ii)A has two equal rows (columns), then per(A) = |A|+ + |A|− = 2|A|+.
�

Theorem 3.13 If M =

(

A C

0 D

)

, then per(M) = per(A)per(D).

Proof. From Lemma 10 we know that
per(M) = |M |+ + |M |− = |A|+|D|+ + |A|−|D|− + |A|+|D|− + |A|−|D|+,
that is
per(M) = |A|+(|D|++ |D|−)+ |A|−(|D|++ |D|−) = per(D)(|A|++ |A|−) =

per(A)per(D),
then we have per(M) = per(A)per(D). �
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