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1 Preliminary Notes

It is well-known that the Jordan canonical form of linear mappings on low
dimensional vector spaces over a complex field [1]. The aim of this paper is
to research the Jordan canonical form of homogeneous linear mappings on low
dimensional Zs-graded vector spaces over a complex field. Throughout this
paper, we assume that all vector spaces are Zs-graded over a complex number
field and all linear mappings are homogeneous.

Let V = V5 ® Vi be a Zs-graded vector space over a complex number field.
If a linear mapping A satisfies A(V5) C V4, (i = 0, 1), then A is called an even
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mapping, i.e., A € (EndV). If a linear mapping A satisfies A(V5) C V5 and
A(V7) C V5, then A is called an odd mapping, i.e., A € (EndV);.

We let (card Aoy, card A, - - -, card Aay, ) be the matrix of A with respect to
the basis aq, ag, - - -, ay, of V. This matrix will be denoted by M (A;aq, ag,- - - ,as,)
or simply by M(A).

Let V be a 2 or 3-dimensional Z,-graded vector space over the complex
number field C and the characteristic polynomial of A be f()).

2 Main Results

Theorem 2.1 LetV be a 2-dimensional Zs-graded vector space over a com-
plex number field C. If dimV = 2 and A € EndV, then following statements
hold:

1. When A € (EndV)g, the Jordan canonical form of A is well-known.
2. When A € (EndV)i, the Jordan canonical form of A with respect to
any basis is zero matriz.

Proof. 1. (1) If f(A) = (A= A1)(A—A2), A1 # Ao ,then the matrix of A with
A 0
0 XN/

(2) If f(A) = (A= Xg)? and A = )\jid ,then the matrix of A with respect
to some basis of V' is \glo.If A # A\gid,we let £1,e5 be a basis of Vj such that
E9 = (A—)\()id)€1 7& 0 and (A_)\Oid)€2 = 0, then AEl = )\051 + (A—)\()id)f:g =
Ao€1 + €2, Acg = Agea. Hence, the matrix of A with respect to this basis is

XA O
1 X/

2. When A € (EndV); , we let £1,e5 be a basis of V5. According to the
definition A(V5) C Vi ,then the matrix of A with respect to any basis is zero
matrix. [

respect to some basis of V' is

Theorem 2.2 LetV be a 2-dimensional Zo-graded vector space over a com-
plex number field C. If dimVy = dimV; = 1 and A € EndV, then the following
statements hold:

1. When A € (EndV)g, if f(A) = (A= A1)(A — A2), A1 # Ao, then the
matriz of A with respect to some basis of V' is diag(A, A2); if fF(A) = (A—Xo)?,
then A — \id = 0, the the matrix of A with respect to some basis of V is
diag(Ao, >\0)

2. When A € (EndV)i, the matriz of A with respect to some basis of V
is diag(A, —A1).

Proof. 1. If f(A) = (A= A1)(A—A2), A1 # Ay, then the matrix of A with
respect to some basis of V' is diag(A1, A2).
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If f(A) = (A= XA)(A—=X2), A\ = Ao, then the matrix of A with respect to
some basis of V' is diag(Ai, A1).

2. When A € (EndV)i, we let g9,1 be a basis of V' such that g5 € Vj
and g, € V5. It is easy to see that the matrix of A with respect to this basis is

aO a(1]2 , 80 f(A) = A2 —ajg-ag = (A= A1)(A+ \1). Hence, there exists a

21
basis of V' such that the matrix of A with respect to the basis is diag(A1, —A1).
([

Theorem 2.3 LetV be a 2-dimensional Zo-graded vector space over a com-
plex number field C. If dimV; = 2 and A € EndV, then the following state-
ments hold:

1. When A € (EndV)g, the matriz of A with respect to any basis of V' is
2ero matriz.

2. When A € (EndV)i, if f(A) = (A= X)X = Xa), A\ # Ao, then the
matriz of A with respect to some basis of V' is diag(A, A\2); if f(A) = (A —

Xo)?, then the matriz of A with respect to some basis of V is ()\0 0 ) or

0 X
X 0
1 X/

Proof. 1. When A € (EndV)j , we let €1, 5 be a basis of Vj, according
to the definition A(V5) C V4, then the matrix of A with respect to any basis
is zero matrix.

2. When A € (EndV)i, we let €; be an eigenvector of A belonging to an
eigenvalue \;, then €1, &5 is a basis of V and M(A;e1,e2) = diag(A1, \2).

If f(A)=(\—Xo)? and A — \gid = 0, then the matrix of A with respect

to some basis of V is (AO 0 )

0 o
If f(A) = (XA— Xo)? and A — A\gid # 0, then the matrix of A with respect
to some basis of V' is M(A;¢eq,e2) = (io )? ) O
0

Theorem 2.4 LetV be a 3-dimensional Zs-graded vector space over a com-
plex number field C. If dimVy = 3 and A € EndV, then the following state-
ments hold:

1. When A€ (EndV)s.
(D) If f(A) = (A= A1)(A = X2) (A — A3), where A1, g, A3 is not equal to each
other, then the matriz of A with respect to this basis is diag(A1, Ao, A3).
(2) If f(N) = (A= X)2(A = X\2) and Ay # Xy, then the matriz of A with
respect to this basis is
A0 0 A1 00
0 )\1 0 or 1 )\1 0
0 0 X 0 0 X
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(3) If f(X) = (A= N\o)?, then the matriz of A with respect to this basis is

X 00 A 0 0 A 00
0 )\0 0 or 1 )\0 0 or 1 >\0 0
0 0 X 0 0 X 0 1 X

2. When A € (EndV)i, , the matriz of A with respect to any basis of V
18 zero matric.

Proof. 1. Take g; be an eigenvector of A belonging to an eigenvalue \;,
then {e1,e9,e3} is a basis of V5 and M(A;e1,e9,23) = diag(A1, A2, A\3).

(2) If f(A) = (A= A1)?(A — A2), then the root space decomposition of Vj is
Vs = Ry, (A) @ Ry, (A), where dimR), (A) = 2, dimR,,(A) = 1.

If (A~ Nid)? g, (=0, let {e1,62} be a basis of Ry, (A). Take &3 be
an eigenvector of Ry, (A) belonging to an eigenvalue A\, , then {e1,e9,e3} is a
basis of Vg, and M(A;e1,e9,e3) = diag(A, A1, A2).

If (A — Noid)* |g, (07 O, then take &, €Rj,(A) such that &5 = (A —
Aid)e; # 0, take €5 be an eigenvector of A belonging to an eigenvalue g, then
{€1,€2,e3} is a basis of Vj and

A0 0
M(A;€1,€2,€3) = 1 )\1 0
0 0 A

(3) If A— N\pid = 0, then the matrix of A with respect to this basis is \g /3.

If (A—Xoid) |v;# 0 and (A — Ngid)? = 0, we need to prove dimE),(A) = 2.
dimFE),(A) < 2 is straight-forward. Suppose dimFE),(A) = 1 and {51, 52, 53}
be a basis of E),(A), then take 83 €E\,(A), so (A — \oid)B; = kB3 # 0, (A —
)\old)ﬁg = lﬁg 7& 0. But (A— )\Old)(lﬁl — k‘ﬁg) = O, i.e., (lﬁl — k‘ﬁg) EE)\O (.A) =
L(ps), this is a contradiction.

Let €1 € Vg such that g5 = (A — \jid)e; # 0, then we have 5 € E) (A).
Take e5 € E),(A) such that {2, €3} is the basis of Ey,(A). If kye;+koco+kses =
0 and A — A\jid = 0, then kjeg = 0, so k; = 0. Let {e3,e3} be the basis of
Ey\,(A), then ky = k3 =0, so {1, 9,3} is the basis of V5, and

A 0 0
M(A;€1,€2,€3) = 1 )\0 0
0 0 X

If (A — X\oid)? # 0, we can take g;(€Vj) such that e3 = (A — \id)%e; # 0, then
E9 = (A — )\1id)61 # 0.

If ]{7181 —|—]€282+l{33€3 = 0, then (.A—)\lid)2]€1€1 = 0, i.e., ]{3183 = 0, SO ]{31 = 0.
Then we have (.A - )\1id)(k’2€2 + k‘gEg) = k’2€3 = 0, SO k’3€3 = 0. Hence, k’g =0
and {e1,e9,€3} is a basis of V. Therefore

A 0 0

M(A;€1,€2,€3) = 1 )\0 0
0 1 X
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2When A € (EndV)j , let 1,e9,e3 be a basis of Vj according to the
definition A(Vj5) C Vi, then the matrix of A with respect to any basis is zero
matrix. U

Theorem 2.5 LetV be a 3-dimensional Zs-graded vector space over a com-
plex number field C. If dimVg = 2,dimV; = 1 and A € EndV, then the
following statements hold:

1. When A € (EndV)g, if f(N) = (A=A1)(A—=Xa)(A—A3), where A\, A2, A3
is not equal to each other, then the matriz of A with respect to this basis is
diag(Al, >\2, >\3)

If fO) = (A= A)2(A = o) and Ay # g, then the matriz of A with respect
to this basis is

A0 0 A 00
0 )\1 0 or 1 )\1 0
0 0 X 0 0 X
If f(N) = (X — X\o)?, then the matriz of A with respect to this basis is
X 0 0 A 0 0
0 )\0 0 or 1 )\0 0
0 0 X 0 0 X

2. When A € (EndV)i, the matriz of A with respect to this basis is
diag(A\1, —\1,0) or zero matriz.

Proof. 1. (1) Take ¢; be an eigenvector of A belonging to an eigenvalue \;,
then {e1,e9,e5} isabasisof V. = Vi@ V; and M (A; €1, e9,23) = diag(A1, A2, A3).

(2) If (A — Xaid) [15# 0, then we can take {e1,£2} be a basis of V5 and
e3(€V;) be an eigenvector of A belonging to an eigenvalue \;. So {e1,e9,€3}
is the basis of V' is and M (A;e1,¢e9,e3) = diag(Ai, A1, Aa).

If (A—Aoid) |y, # 0, then we can take e; € Vj such that e = (A—Asid)e; #
0. Take 3 be an eigenvector of A belonging to an eigenvalue A, so {e1, 9,3}
is the basis of V' and

A0 0
M(A;€1,€2,€3) = 1 )\1 0
0 X

(3) If (A — Xpid) = 0, then the matrix of A with respect to any basis is
Mols.

If (A — Xoid) |,# 0 and (A — N\gid)? = 0, then dimFE) (A) = 2. Take
£1(€Vg) be an eigenvector of A belonging to an eigenvalue Ag such that e; =
(A—Xaid)e; # 0, take €3 € V; be an eigenvector of A belonging to an eigenvalue
Ao and we have

A 0 0
M(A;€1,€2,€3) = 1 )\0 0
0 0 X
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2. (1) Let A € (EndV); and €; be an eigenvector of A belonging to an
eigenvalue \;, then {e1,e5,e35} is a basis of V= V5@ V; and M (Aj;¢e1,69,63) =
diag(Al, —)\1, O)

(2) Let €1, e9,e3 be a basis of V5. According to the definition A(V5) C V4
we have the matrix of A with respect to any basis is zero matrix. O

Theorem 2.6 Let dimV; = 1,dimVj = 2.

1. When A € (EndV ), if f(A) = (A= A1)(A—=X2) (A= A3), where A\, Ag, A3
is not equal to each other, then the matriz of A with respect to this basis is
diag(A1, Ao, A3). If f(N) = (A= A1) (A= X2)?, then the matriz of A with respect
to this basis is

A0 0 A 00
0 )\2 0 or 0 )\2 0
0 0 X 0 1 X
If f(N) = (A — X\o)?, then the matriz of A with respect to this basis is
Ao 0 0 A 0 0
0 X O Jorl O X O
0 0 X 0 1 X

2. When A € (EndV)i, then the matriz of A with respect to this basis is
diag(A1, —A1,0) or zero matriz.

Proof. 1. (1) Let ¢; be an eigenvector of A belonging to an eigenvalue \;,
then {e1,e2,e3} isabasisof V.= Vi®Vj and M (A; ey, e9,e3) = diag(A1, Mg, A3).

(2) If (A — A2id) [15# 0 and {e1, 2} be a basis of Vi, then take e3 € V5 be
an eigenvector of A4 belonging to an eigenvalue \;. So {e1, 9,23} is the basis
of V and M(A, £€1,€9, 83) = diag()\l, )\2, )\2)

If (A — X2id) |37 0, then take e5(€V7) such that e5 = (A — Asid)ey # 0.
Take £; be an eigenvector of A belonging to an eigenvalue \; , so {e1,¢€2, 3}
is the basis of V' and

A 000
M(A;&l,ég,ﬁg) = 1 )\2 0
0 1 X

(3) If A — \oid = 0, then the matrix of A with respect to any basis is Ag/s.

If (A— Nid) [iz# 0 and (A — Aid)> = 0, then dimFE, (A) = 2. Let
g1 € Vg be an eigenvector of A belonging to an eigenvalue A\g and €5 € Vi be
an eigenvector of A belonging to an eigenvalue \g, then €3 = (A — A\yid)es # 0
and

A 0 0
M(A;&l,ég,ﬁg) = 0 )\0 0
0 1 X

2. (1) Let ; be an eigenvector of A belonging to an eigenvalue \;, then
{€1,€9,€3} is a basis of V. = V5 @ V; and M (A;z;e1,e9,e3) = diag(A, —A1,0).



The Jordan canonical form of homogeneous linear mappings 729

(2) When A € (EndV); and €1, ¢e9,e3 be a basis of V5. According to the
definition A(V5) C Vi, we have the matrix of A with respect to any basis is
zero matrix. U

Theorem 2.7 Let dimV; = 3, we have
Case 1 If A € End(Vj), then the matriz of A with respect to any basis is
2ero matriz.
Case 2 If A € End(V7), then we have
(1) fO) = (A= A)(A = X)) (A= A3), where A1, Ay, Az is not equal to each
other, then the matriz of A with respect to this basis is diag(A1, Ao, A3).
(2) fON) = (A=X)2(A—Ny), then the matrixz of A with respect to this basis
is
A0 0 A0 0
0O A O, 1T XN O
0 0 X 0 0 X
(3) f(XN) = (A= Xo)3, if A1 — \oid = 0, then the matriz of A with respect
to this basis is

X 0 0
0 X 0],
0 0 X

if A7 — Xoid # 0 and (A7 — \oid)? = 0, then the matriz of A with respect
to this basis is

A 0 0
1 X 0],
0 0 X

if (A1 — Xoid)? # 0 and (A; — \oid)? = 0, then the matriz of A with respect
to this basis is

A 0 0
1 X 0
0 1 X

Proof. 1. When A € (EndV )5 and e1, €9, €3 be a basis of Vj, then according
to the definition we have A(V;) C Vj. Hence, the matrix of A with respect to
any basis is zero matrix.

2. (1) Let A € (EndV); and ¢; be an eigenvector of A belonging to
an eigenvalue \;, then {ei,e9,e3} is a basis of Vi and M(Aj;¢e1,e9,63) =
diag()\l, )\2, )\3)

(2) If f(X) = (A= A1)%(X = Xy), then the root space decomposition of V; is
Vi = Ry, (A1) @ Ry, (A1), where dimR), (A7) = 2 and dimR,,(A;) = 1.

If (A — \iid)? |, (9= 0 and {e1,6} is a basis of Ry, (A), then take e3
be an eigenvector of Ry,(.A) belonging to an eigenvalue Ay. So {e1, 9,63} is a
basis of Vi and M (A; ey, e9,e3) = diag(Ai, A1, Aa).

If (A — Xoid)? |, (07 0, then take &1 € Ry, (A) such that e = (A —
A1id)e; # 0. Let £3 be an eigenvector of A belonging to an eigenvalue Ay, then
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{€1,€9,e3} is a basis of V; and

A 000
M(A;&l,ég,ﬁg) = 1 )\1 0
0 0 X

(3) If A— N\id = 0, then the matrix of A with respect to this basis is \g/s.

If (A—Xoid) |v; # 0 and (A—Xid)? = 0, then we need to prove dimE)(A) =
2. dimFE,,(A) < 2 is straight-forward. If dimE, (A) = 1, let {51, 52, 53}
be a basis of E),(A), then take 3 € E),(A). So we have (A — \oid)3; =
k‘ﬂg 7é 0, (.A - )\old)ﬁ2 - lﬂg 7é 0. But (.A - )\old)(lﬁl - k’ﬁg) = O, i.e.,
(181 — kB2) €E\,(A) = L(Ps), this is a contradiction.

Let e, € Vi such that g5 = (A — A\jid)e; # 0, then e €F)(A). Take
g3 €E),(A) such that {e9,e3} is a basis of Ey (A). If kiey + kagg + ksez = 0
and A — A\jid = 0, then kjeo = 0, so k; = 0. Let {e9,e3} be a basis of E,,(A),
then ky = k3 = 0. Hence, {e1, 9,3} is a basis of V; and

N 0 0
M(A;&l,ég,ﬁg) = 1 )\0 0
0 0 X

If (A—M\oid)? # 0, then we can take €;(€V7) such that e3 = (A—\id)?%e; #
0. So E9 = (.A - )\11d)€1 7& 0.

If ]{7181 —|—]€282+l{3383 = O, then (.A—)\lid)2]€1€1 = O, i.e., ]{3183 = O, SO ]{31 = 0.
Then (A — \id)(kaeo + kses) = koes = 0 and kzes = 0, so k3 = 0. Hence,
{e1,€9,€3} is a basis of V; and

A 0 0
M(A;&l,ég,ﬁg) = 1 )\0 0
0 1 X
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