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1 Preliminary Notes

It is well-known that the Jordan canonical form of linear mappings on low
dimensional vector spaces over a complex field [1]. The aim of this paper is
to research the Jordan canonical form of homogeneous linear mappings on low
dimensional Z2-graded vector spaces over a complex field. Throughout this
paper, we assume that all vector spaces are Z2-graded over a complex number
field and all linear mappings are homogeneous.

Let V = V0̄ ⊕ V1̄ be a Z2-graded vector space over a complex number field.
If a linear mapping A satisfies A(Vī) ⊆ Vī, (i = 0, 1), then A is called an even
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mapping, i.e., A ∈ (EndV )0̄. If a linear mapping A satisfies A(V0̄) ⊆ V1̄ and
A(V1̄) ⊆ V0̄, then A is called an odd mapping, i.e., A ∈ (EndV )1̄.

We let (cardAα1, cardAα2, · · · , cardAαn) be the matrix ofA with respect to
the basis α1, α2, · · · , αn of V . This matrix will be denoted byM(A;α1, α2,· · · ,αn)
or simply by M(A).

Let V be a 2 or 3-dimensional Z2-graded vector space over the complex
number field C and the characteristic polynomial of A be f(λ).

2 Main Results

Theorem 2.1 Let V be a 2-dimensional Z2-graded vector space over a com-

plex number field C. If dimV0̄ = 2 and A ∈ EndV , then following statements

hold:

1. When A ∈ (EndV )0̄, the Jordan canonical form of A is well-known.

2. When A ∈ (EndV )1̄, the Jordan canonical form of A with respect to

any basis is zero matrix.

Proof. 1. (1) If f(λ) = (λ−λ1)(λ−λ2), λ1 6= λ2 ,then the matrix of A with

respect to some basis of V is

(

λ1 0
0 λ2

)

.

(2) If f(λ) = (λ − λ0)
2 and A = λ0id ,then the matrix of A with respect

to some basis of V is λ0I2.If A 6= λ0id,we let ε1, ε2 be a basis of V0̄ such that
ε2 = (A−λ0id)ε1 6= 0 and (A−λ0id)ε2 = 0, then Aε1 = λ0ε1+(A−λ0id)ε2 =
λ0ε1 + ε2, Aε2 = λ0ε2. Hence, the matrix of A with respect to this basis is
(

λ0 0
1 λ0

)

.

2. When A ∈ (EndV )1̄ , we let ε1, ε2 be a basis of V0̄. According to the
definition A(V0̄) ⊆ V1̄ ,then the matrix of A with respect to any basis is zero
matrix. �

Theorem 2.2 Let V be a 2-dimensional Z2-graded vector space over a com-

plex number field C. If dimV0̄ = dimV1̄ = 1 and A ∈ EndV , then the following

statements hold:

1. When A ∈ (EndV )0̄, if f(λ) = (λ − λ1)(λ − λ2), λ1 6= λ2, then the

matrix of A with respect to some basis of V is diag(λ1, λ2); if f(λ) = (λ−λ0)
2,

then A − λ0id = 0, the the matrix of A with respect to some basis of V is

diag(λ0, λ0).
2. When A ∈ (EndV )1̄, the matrix of A with respect to some basis of V

is diag(λ1,−λ1).

Proof. 1. If f(λ) = (λ− λ1)(λ− λ2), λ1 6= λ2, then the matrix of A with
respect to some basis of V is diag(λ1, λ2).



The Jordan canonical form of homogeneous linear mappings 725

If f(λ) = (λ− λ1)(λ− λ2), λ1 = λ2, then the matrix of A with respect to
some basis of V is diag(λ1, λ1).

2. When A ∈ (EndV )1̄, we let ε0, ε1 be a basis of V such that ε0 ∈ V0̄

and ε1 ∈ V1̄. It is easy to see that the matrix of A with respect to this basis is
(

0 a12
a21 0

)

, so f(λ) = λ2 − a12 · a21 = (λ− λ1)(λ+ λ1). Hence, there exists a

basis of V such that the matrix of A with respect to the basis is diag(λ1,−λ1).
�

Theorem 2.3 Let V be a 2-dimensional Z2-graded vector space over a com-

plex number field C. If dimV1̄ = 2 and A ∈ EndV , then the following state-

ments hold:

1. When A ∈ (EndV )0̄, the matrix of A with respect to any basis of V is

zero matrix.

2. When A ∈ (EndV )1̄, if f(λ) = (λ − λ1)(λ − λ2), λ1 6= λ2, then the

matrix of A with respect to some basis of V is diag(λ1, λ2); if f(λ) = (λ −

λ0)
2, then the matrix of A with respect to some basis of V is

(

λ0 0
0 λ0

)

or
(

λ0 0
1 λ0

)

.

Proof. 1. When A ∈ (EndV )0̄ , we let ε1, ε2 be a basis of V1̄, according
to the definition A(V1̄) ⊆ V0̄, then the matrix of A with respect to any basis
is zero matrix.

2. When A ∈ (EndV )1̄, we let εi be an eigenvector of A belonging to an
eigenvalue λi, then ε1, ε2 is a basis of V and M(A; ε1, ε2) = diag(λ1, λ2).

If f(λ) = (λ − λ0)
2 and A − λ0id = 0, then the matrix of A with respect

to some basis of V is

(

λ0 0
0 λ0

)

.

If f(λ) = (λ − λ0)
2 and A − λ0id 6= 0, then the matrix of A with respect

to some basis of V is M(A; ε1, ε2) =

(

λ0 0
1 λ0

)

. �

Theorem 2.4 Let V be a 3-dimensional Z2-graded vector space over a com-

plex number field C. If dimV0̄ = 3 and A ∈ EndV , then the following state-

ments hold:

1. When A ∈ (EndV )0̄.
(1) If f(λ) = (λ− λ1)(λ−λ2)(λ−λ3), where λ1, λ2, λ3 is not equal to each

other, then the matrix of A with respect to this basis is diag(λ1, λ2, λ3).
(2) If f(λ) = (λ − λ1)

2(λ − λ2) and λ1 6= λ2, then the matrix of A with

respect to this basis is




λ1 0 0
0 λ1 0
0 0 λ2



 or





λ1 0 0
1 λ1 0
0 0 λ2



.
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(3) If f(λ) = (λ− λ0)
3, then the matrix of A with respect to this basis is





λ0 0 0
0 λ0 0
0 0 λ0



 or





λ0 0 0
1 λ0 0
0 0 λ0



 or





λ0 0 0
1 λ0 0
0 1 λ0



.

2. When A ∈ (EndV )1̄, , the matrix of A with respect to any basis of V

is zero matrix.

Proof. 1. Take εi be an eigenvector of A belonging to an eigenvalue λi,
then {ε1, ε2, ε3} is a basis of V0̄ and M(A; ε1, ε2, ε3) = diag(λ1, λ2, λ3).

(2) If f(λ) = (λ− λ1)
2(λ− λ2), then the root space decomposition of V0̄ is

V0̄ = Rλ1
(A)⊕ Rλ2

(A), where dimRλ1
(A) = 2, dimRλ2

(A) = 1.
If (A − λ1id)

2 |Rλ1
(A)= 0, let {ε1, ε2} be a basis of Rλ1

(A). Take ε3 be
an eigenvector of Rλ2

(A) belonging to an eigenvalue λ2 , then {ε1, ε2, ε3} is a
basis of V0̄, and M(A; ε1, ε2, ε3) = diag(λ1, λ1, λ2).

If (A − λ0id)
2 |Rλ1

(A) 6= 0, then take ε1 ∈Rλ1
(A) such that ε2 = (A −

λ1id)ε1 6= 0, take ε3 be an eigenvector of A belonging to an eigenvalue λ2, then
{ε1, ε2, ε3} is a basis of V0̄ and

M(A; ε1, ε2, ε3) =





λ1 0 0
1 λ1 0
0 0 λ2



 .

(3) If A−λ0id = 0, then the matrix of A with respect to this basis is λ0I3.
If (A−λ0id) |V0̄

6= 0 and (A−λ0id)
2 = 0, we need to prove dimEλ0

(A) = 2.
dimEλ0

(A) ≤ 2 is straight-forward. Suppose dimEλ0
(A) = 1 and {β1, β2, β3}

be a basis of Eλ0
(A), then take β3 ∈Eλ0

(A), so (A− λ0id)β1 = kβ3 6= 0, (A−
λ0id)β2 = lβ3 6= 0. But (A− λ0id)(lβ1 − kβ2) = 0, i.e., (lβ1 − kβ2) ∈Eλ0

(A) =
L(β3), this is a contradiction.

Let ε1 ∈ V0̄ such that ε2 = (A − λ1id)ε1 6= 0, then we have ε2 ∈ Eλ0
(A).

Take ε3 ∈Eλ0
(A) such that {ε2, ε3} is the basis of Eλ0

(A). If k1ε1+k2ε2+k3ε3 =
0 and A − λ1id = 0, then k1ε2 = 0, so k1 = 0. Let {ε2, ε3} be the basis of
Eλ0

(A), then k2 = k3 = 0, so {ε1, ε2, ε3} is the basis of V0̄, and

M(A; ε1, ε2, ε3) =





λ0 0 0
1 λ0 0
0 0 λ0



 .

If (A−λ0id)
2 6= 0, we can take ε1(∈V0̄) such that ε3 = (A−λ1id)

2ε1 6= 0, then
ε2 = (A− λ1id)ε1 6= 0.

If k1ε1+k2ε2+k3ε3 = 0, then (A−λ1id)
2k1ε1 = 0, i.e., k1ε3 = 0, so k1 = 0.

Then we have (A− λ1id)(k2ε2 + k3ε3) = k2ε3 = 0, so k3ε3 = 0. Hence, k3 = 0
and {ε1, ε2, ε3} is a basis of V0̄. Therefore

M(A; ε1, ε2, ε3) =





λ0 0 0
1 λ0 0
0 1 λ0



 .
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2.When A ∈ (EndV )1̄ , let ε1, ε2, ε3 be a basis of V0̄ according to the
definition A(V0̄) ⊆ V1̄, then the matrix of A with respect to any basis is zero
matrix. �

Theorem 2.5 Let V be a 3-dimensional Z2-graded vector space over a com-

plex number field C. If dimV0̄ = 2, dimV1̄ = 1 and A ∈ EndV , then the

following statements hold:

1. When A ∈ (EndV )0̄, if f(λ) = (λ−λ1)(λ−λ2)(λ−λ3), where λ1, λ2, λ3

is not equal to each other, then the matrix of A with respect to this basis is

diag(λ1, λ2, λ3).
If f(λ) = (λ− λ1)

2(λ− λ2) and λ1 6= λ2, then the matrix of A with respect

to this basis is




λ1 0 0
0 λ1 0
0 0 λ2



 or





λ1 0 0
1 λ1 0
0 0 λ2



.

If f(λ) = (λ− λ0)
3, then the matrix of A with respect to this basis is




λ0 0 0
0 λ0 0
0 0 λ0



 or





λ0 0 0
1 λ0 0
0 0 λ0



 .

2. When A ∈ (EndV )1̄, the matrix of A with respect to this basis is

diag(λ1,−λ1, 0) or zero matrix.

Proof. 1. (1) Take εi be an eigenvector of A belonging to an eigenvalue λi,
then {ε1, ε2, ε3} is a basis of V = V0̄⊕V1̄ andM(A; ε1, ε2, ε3) = diag(λ1, λ2, λ3).

(2) If (A − λ2id) |V1̄
6= 0, then we can take {ε1, ε2} be a basis of V0̄ and

ε3(∈V1̄) be an eigenvector of A belonging to an eigenvalue λ1. So {ε1, ε2, ε3}
is the basis of V is and M(A; ε1, ε2, ε3) = diag(λ1, λ1, λ2).

If (A−λ2id) |V1̄
6= 0, then we can take ε1 ∈ V1̄ such that ε2 = (A−λ2id)ε1 6=

0. Take ε3 be an eigenvector of A belonging to an eigenvalue λ1, so {ε1, ε2, ε3}
is the basis of V and

M(A; ε1, ε2, ε3) =





λ1 0 0
1 λ1 0
0 0 λ2



 .

(3) If (A − λ0id) = 0, then the matrix of A with respect to any basis is
λ0I3.

If (A − λ0id) |V0̄
6= 0 and (A − λ0id)

2 = 0, then dimEλ0
(A) = 2. Take

ε1(∈V0̄) be an eigenvector of A belonging to an eigenvalue λ0 such that ε2 =
(A−λ2id)ε1 6= 0, take ε3 ∈ V1̄ be an eigenvector ofA belonging to an eigenvalue
λ0 and we have

M(A; ε1, ε2, ε3) =





λ0 0 0
1 λ0 0
0 0 λ0



 .
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2. (1) Let A ∈ (EndV )1̄ and εi be an eigenvector of A belonging to an
eigenvalue λi, then {ε1, ε2, ε3} is a basis of V = V0̄⊕V1̄ and M(A1̄; ε1, ε2, ε3) =
diag(λ1,−λ1, 0).

(2) Let ε1, ε2, ε3 be a basis of V0̄. According to the definition A(V0̄) ⊆ V1̄

we have the matrix of A with respect to any basis is zero matrix. �

Theorem 2.6 Let dimV0̄ = 1, dimV1̄ = 2.
1. When A ∈ (EndV )0̄, if f(λ) = (λ−λ1)(λ−λ2)(λ−λ3), where λ1, λ2, λ3

is not equal to each other, then the matrix of A with respect to this basis is

diag(λ1, λ2, λ3). If f(λ) = (λ−λ1)(λ−λ2)
2, then the matrix of A with respect

to this basis is




λ1 0 0
0 λ2 0
0 0 λ2



 or





λ1 0 0
0 λ2 0
0 1 λ2



.

If f(λ) = (λ− λ0)
3, then the matrix of A with respect to this basis is




λ0 0 0
0 λ0 0
0 0 λ0



 or





λ0 0 0
0 λ0 0
0 1 λ0



.

2. When A ∈ (EndV )1̄, then the matrix of A with respect to this basis is

diag(λ1,−λ1, 0) or zero matrix.

Proof. 1. (1) Let εi be an eigenvector of A belonging to an eigenvalue λi,
then {ε1, ε2, ε3} is a basis of V = V0̄⊕V1̄ andM(A; ε1, ε2, ε3) = diag(λ1, λ2, λ3).

(2) If (A− λ2id) |V1̄
6= 0 and {ε1, ε2} be a basis of V1̄, then take ε3 ∈ V0̄ be

an eigenvector of A belonging to an eigenvalue λ1. So {ε1, ε2, ε3} is the basis
of V and M(A; ε1, ε2, ε3) = diag(λ1, λ2, λ2).

If (A − λ2id) |V1̄
6= 0, then take ε2(∈V1̄) such that ε3 = (A − λ2id)ε2 6= 0.

Take ε1 be an eigenvector of A belonging to an eigenvalue λ1 , so {ε1, ε2, ε3}
is the basis of V and

M(A; ε1, ε2, ε3) =





λ1 0 0
1 λ2 0
0 1 λ2



 .

(3) If A−λ0id = 0, then the matrix of A with respect to any basis is λ0I3.
If (A − λ0id) |V1̄

6= 0 and (A − λ0id)
2 = 0, then dimEλ0

(A) = 2. Let
ε1 ∈ V0̄ be an eigenvector of A belonging to an eigenvalue λ0 and ε2 ∈ V1̄ be
an eigenvector of A belonging to an eigenvalue λ0, then ε3 = (A− λ2id)ε2 6= 0
and

M(A; ε1, ε2, ε3) =





λ0 0 0
0 λ0 0
0 1 λ0



 .

2. (1) Let εi be an eigenvector of A belonging to an eigenvalue λi, then
{ε1, ε2, ε3} is a basis of V = V0̄ ⊕ V1̄ and M(A1̄; ε1, ε2, ε3) = diag(λ1,−λ1, 0).



The Jordan canonical form of homogeneous linear mappings 729

(2) When A ∈ (EndV )1̄ and ε1, ε2, ε3 be a basis of V0̄. According to the
definition A(V0̄) ⊆ V1̄, we have the matrix of A with respect to any basis is
zero matrix. �

Theorem 2.7 Let dimV1̄ = 3, we have

Case 1 If A ∈ End(V0̄), then the matrix of A with respect to any basis is

zero matrix.

Case 2 If A ∈ End(V1̄), then we have

(1) f(λ) = (λ − λ1)(λ − λ2)(λ − λ3), where λ1, λ2, λ3 is not equal to each

other, then the matrix of A with respect to this basis is diag(λ1, λ2, λ3).
(2) f(λ) = (λ−λ1)

2(λ−λ2), then the matrix of A with respect to this basis

is




λ1 0 0
0 λ1 0
0 0 λ2



,





λ1 0 0
1 λ1 0
0 0 λ2





(3) f(λ) = (λ − λ0)
3, if A1̄ − λ0id = 0, then the matrix of A with respect

to this basis is




λ0 0 0
0 λ0 0
0 0 λ0



,

if A1̄ − λ0id 6= 0 and (A1̄ − λ0id)
2 = 0, then the matrix of A with respect

to this basis is




λ0 0 0
1 λ0 0
0 0 λ0



,

if (A1̄−λ0id)
2 6= 0 and (A1̄−λ0id)

3 = 0, then the matrix of A with respect

to this basis is




λ0 0 0
1 λ0 0
0 1 λ0



.

Proof. 1.WhenA ∈ (EndV )0̄ and ε1, ε2, ε3 be a basis of V1̄, then according
to the definition we have A(V1̄) ⊆ V0̄. Hence, the matrix of A with respect to
any basis is zero matrix.

2. (1) Let A ∈ (EndV )1̄ and εi be an eigenvector of A belonging to
an eigenvalue λi, then {ε1, ε2, ε3} is a basis of V1̄ and M(A1̄; ε1, ε2, ε3) =
diag(λ1, λ2, λ3).

(2) If f(λ) = (λ− λ1)
2(λ− λ2), then the root space decomposition of V1̄ is

V1̄ = Rλ1
(A1̄)⊕ Rλ2

(A1̄), where dimRλ1
(A1̄) = 2 and dimRλ2

(A1̄) = 1.
If (A − λ1id)

2 |Rλ1
(A)= 0 and {ε1, ε2} is a basis of Rλ1

(A), then take ε3
be an eigenvector of Rλ2

(A) belonging to an eigenvalue λ2. So {ε1, ε2, ε3} is a
basis of V1̄ and M(A; ε1, ε2, ε3) = diag(λ1, λ1, λ2).

If (A − λ0id)
2 |Rλ1

(A) 6= 0, then take ε1 ∈ Rλ1
(A) such that ε2 = (A −

λ1id)ε1 6= 0. Let ε3 be an eigenvector of A belonging to an eigenvalue λ2, then
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{ε1, ε2, ε3} is a basis of V1̄ and

M(A; ε1, ε2, ε3) =





λ1 0 0
1 λ1 0
0 0 λ2



 .

(3) If A−λ0id = 0, then the matrix of A with respect to this basis is λ0I3.
If (A−λ0id) |V1̄

6= 0 and (A−λ0id)
2 = 0, then we need to prove dimEλ0

(A) =
2. dimEλ0

(A) ≤ 2 is straight-forward. If dimEλ0
(A) = 1, let {β1, β2, β3}

be a basis of Eλ0
(A), then take β3 ∈ Eλ0

(A). So we have (A − λ0id)β1 =
kβ3 6= 0, (A − λ0id)β2 = lβ3 6= 0. But (A − λ0id)(lβ1 − kβ2) = 0, i.e.,
(lβ1 − kβ2) ∈Eλ0

(A) = L(β3), this is a contradiction.
Let ε1 ∈ V1̄ such that ε2 = (A − λ1id)ε1 6= 0, then ε2 ∈Eλ0

(A). Take
ε3 ∈Eλ0

(A) such that {ε2, ε3} is a basis of Eλ0
(A). If k1ε1 + k2ε2 + k3ε3 = 0

and A− λ1id = 0, then k1ε2 = 0, so k1 = 0. Let {ε2, ε3} be a basis of Eλ0
(A),

then k2 = k3 = 0. Hence, {ε1, ε2, ε3} is a basis of V1̄ and

M(A; ε1, ε2, ε3) =





λ0 0 0
1 λ0 0
0 0 λ0



 .

If (A−λ0id)
2 6= 0, then we can take ε1(∈V1̄) such that ε3 = (A−λ1id)

2ε1 6=
0. So ε2 = (A− λ1id)ε1 6= 0.

If k1ε1+k2ε2+k3ε3 = 0, then (A−λ1id)
2k1ε1 = 0, i.e., k1ε3 = 0, so k1 = 0.

Then (A − λ1id)(k2ε2 + k3ε3) = k2ε3 = 0 and k3ε3 = 0, so k3 = 0. Hence,
{ε1, ε2, ε3} is a basis of V1̄ and

M(A; ε1, ε2, ε3) =





λ0 0 0
1 λ0 0
0 1 λ0



 .

�
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