
The Implications of Object-Oriented Analysis and Design

Weifan Liu*

Department of Computer Science and Centre for Health Informatics, University of Manchester, Manchester, UK

DESCRIPTION

Object-oriented analysis and design (OOAD) is a technical 
method for assessing and planning an application, system, or 
company using object-oriented programming and visual 
modeling to direct stakeholder communication and product 
quality throughout the software development process.

In contemporary software engineering, OOAD is frequently 
carried out incrementally and iteratively. Analysis models and 
design models are the byproducts of OOAD processes. These are 
intended to be continuously improved upon and changed, with 
the help of important elements like risks and business value.

Object-oriented analysis

Any analytic activity in the software life cycle has the goal of 
modeling the functional needs of the system without regard to 
implementation limitations.

The primary distinction between object-oriented analysis and 
other types of analysis is how we structure requirements around 
objects, which include behaviors and states patterned after actual 
items that the system interacts with in the real world.

The two components, processes and data, are taken into account 
individually in other or traditional analysis approaches. For 
instance, Entity Relationship (ER) diagrams can be used to 
represent data, and flow charts or structure diagrams can be used 
to model behaviors.

Use cases and object models are typical OOA models. Use cases 
outline the situations for typical domain tasks that the system 
must carry out. Names, class relationships, operations, and 
properties of the primary objects are described in object models. 
Prototypes or mockups of the user interface can also be made to 
aid comprehension.

Object-oriented design

An implementation constraint is applied by a developer during 
object-oriented design (OOD) to the conceptual model created 
during object-oriented analysis. The platforms for the hardware 

and software, the demands for performance, the need for 
permanent storage and transactions, the usability of the system, 
and time and money limits are only a few examples of such 
restrictions.

The technology-independent concepts from the analytical model 
are translated onto implementing classes and interfaces to create 
a model of the solution domain, or a thorough description of 
how the system will be implemented using specific technologies. 
The application of architectural patterns and design patterns 
along with object-oriented design concepts is another important 
topic covered throughout OOD.

Object-oriented modeling

Modeling applications, systems, and business domains using the 
object-oriented paradigm across the course of the whole 
development life cycle is known as object-oriented modeling 
(OOM). In contemporary software engineering, OOM is a key 
approach that is heavily utilized by both OOD and OOA 
activities. The two main components of object-oriented modeling 
are the modeling of static structures, such as classes and 
components, and the modeling of dynamic behaviors, such as 
business processes and use cases. The two unique abstract levels 
during OOM are OOA and OOD. The two most well-known 
worldwide standard languages used for object-oriented modeling 
are the Unified Modeling Language (UML) and SysML.

The benefits of OOM are comprehensive manuals and well-
written programming language codes are generally difficult for 
users to grasp. Users and stakeholders can provide developers 
with input on the proper requirements and system structure 
through the usage of visual model diagrams, which can be easier 
to understand.

Reducing the "semantic gap" between the system and the outside 
world and having the system built using vocabulary that is nearly 
identical to what the stakeholders use in daily business is one of 
the main objectives of the object-oriented approach. Object-
oriented modeling is a crucial tool for making this possible.

Modeling helps coding. Most contemporary software methodologies

Global Journal of Engineering, Design
& Technology

Opinion Article

Correspondence to: Weifan Liu, Department of Computer Science and Centre for Health Informatics, University of Manchester, Manchester, UK, E-mail: 

Weifan999@yahoo.com

Received: 19-Oct-2022, Manuscript No. GJEDT-22-21571; Editor assigned: 25-Oct-2022, PreQC No. GJEDT-22-21571 (PQ); Reviewed: 09-Nov-2022, QC 

No. GJEDT-22-21571; Revised: 16-Nov-2022, Manuscript No. GJEDT-22-21571 (R); Published: 23-Nov-2022, DOI: 10.35248/2319-7293.22.11.157

Citation: Liu W (2022) Object-Oriented Analysis and Design and the Benefits. Global J Eng Des Technol.11:157

Copyright: © 2022 Liu W. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Global J Eng Des Technol, Vol.11 Iss.3 No:1000157 1



aim to answer "what" questions first, followed by  "how" 
questions, i.e., first determine the functionality the system is to 
offer without taking implementation constraints into account, 
then think about how to make specific solutions to these abstract 
requirements, and refine them into detailed designs and codes 
by constraints like technology and budget. This is made possible 

by object-oriented modeling, which generates abstract and 
understandable descriptions of both system requirements and 
designs. Models that define a system's fundamental structures 
and behaviors, such as processes and objects, are significant and 
valuable development assets with higher abstraction levels than 
concrete and difficult source code.

Liu W

Global J Eng Des Technol, Vol.11 Iss.3 No:1000157 2


	Contents
	The Implications of Object-Oriented Analysis and Design
	DESCRIPTION
	Object-oriented analysis
	Object-oriented design
	Object-oriented modeling





