The Functor *F*-*T*or in Category of *L*-fuzzy *R*-modules

Xin Zhou

School of Mathematical and Statistics, Yili Normal University Yining 835000, China

Abstract

In this paper, we show that every L-fuzzy R-module has an L-fuzzy projective resolution. Furthermore, we define the notions of functors F-Tor, and discuss its properties.

Mathematics Subject Classification: 08A72, 16D90, 16E05, 16E30

Keywords: L-fuzzy R-module, F-Tor, L-fuzzy projective resolution.

1 Introduction

Since Rosenfield [8] introduced fuzzy groups, many researchers are engaged in extending the concepts and results of abstract algebra to the broader framework of the fuzzy setting. Negoita and Ralescu [6] introduced the notion of fuzzy modules. Pan [7] introduced the category of fuzzy modules. Zahedi and Ameri [1, 11]defined fuzzy projective and injective presentations of a fuzzy R-module. By using these definitions three functors F-ext, F-ext and F-tor are presented.

The purpose of this paper is to study the functors F-Tor, we obtain that every L-fuzzy R-module has an L-fuzzy projective resolution.

Throughout this paper R is a commutative ring with identity, and L is a completely heyting algebra, which has the least and greatest elements, denoting 0 and 1 respectively. Then an L-fuzzy set μ in X is characterised by a map $\mu: X \to L[2]$.

2 Preliminaries

Definition 2.1. ([7], Definition 1.1) Let A be an R-module. A function μ_A is called L-fuzzy R-module if the map μ from A to L, satisfies (1) $\mu(x+y) \ge \wedge \{\mu(x), \mu(y)\}, (2) \ \mu(rx) \ge \mu(x), (3) \ \mu(0) = 1$, for all $x, y \in A$ and $r \in R$.

Definition 2.2. ([7], Definition 1.1) Let μ_A and η_B be L-fuzzy R-modules, a function $\tilde{f} : \mu_A \to \eta_B$ is called an F-homomorphism if $f : A \to B$ is an R-homomorphism and $\eta(f(x)) \ge \mu(x)$ for all $x \in A$.

Lemma 2.3. ([7], Lemma 1.1) The category R-mod(L) of L-fuzzy R-modules is constituted, as follows:

- (1) Obj(R-mod(L)) is the family of all L-fuzzy R-modules.
- (2) For any $\mu_A, \eta_B \in Obj(R mod(L))$, the set of homomorphisms is

 $Hom_R(\mu_A, \eta_B) = \{\tilde{f} | \tilde{f} : \mu_A \to \eta_B \text{ is an } F\text{-homomorphism} \}.$

The composition of homomorphisms is the usual composition of maps.

Definition 2.4. Let $\tilde{f} : \mu_A \to \eta_B$ be an *F*-homomorphism. η_{Imf} is called the image of \tilde{f} , denoted by $Im\tilde{f}$. Further, μ_{V_0} is called the kernel of \tilde{f} , denoted by $Ker\tilde{f}$, where $V_0 = \{x \in A | \eta(f(x)) = 1\}$.

Definition 2.5. ([10], Definition 3.1) (i) A sequence $\cdots \to \mu_{n-1_{A_{n-1}}} \xrightarrow{f_{n-1}} \mu_{n_{A_n}} \xrightarrow{\tilde{f}_n} \mu_{n+1_{A_{n+1}}} \to \cdots$ of an *F*-homomorphism is said to be *L*-fuzzy exact if and only if $Im\tilde{f}_{n-1}=Ker\tilde{f}_n$ for all n.

(ii) An *L*-fuzzy exact sequence $\bar{0} \to \rho_C \xrightarrow{f} \eta_B \xrightarrow{\tilde{g}} \mu_A \to \bar{0}$ is called an *L*-fuzzy short exact sequence.

Theorem 2.6. ([10], Theorem 3.17) Let $\bar{0} \to \rho_{B'} \xrightarrow{\tilde{f}} \eta_B \xrightarrow{\tilde{g}} \gamma_{B''}$ be an Lfuzzy exact sequence and μ_A an arbitrary L-fuzzy module. The induces sequence $\bar{0} \to Hom_R(\mu_A, \rho_{B'}) \xrightarrow{\tilde{f}_*} Hom_R(\mu_A, \eta_B) \xrightarrow{\tilde{g}_*} Hom_R(\mu_A, \gamma_{B''})$ is exact if and only if for any $\phi \in Hom_R(A, B')$, where $f_*\phi = \psi$, $\tilde{\psi} \in Ker\tilde{g}_*$, one has $\phi^{-1} \cdot \rho \ge \mu$.

Definition 2.7. ([3], Definition 3.1) A nonzero R-homomorphism $f : A \to B$ is called an admissible R-homomorphism if $\tilde{f} : \mu_A \to \eta_B$ is an F-homomorphism.

Definition 2.8. ([11], Definition 4.1) An L-fuzzy short exact sequence $\bar{0} \to \rho_C \xrightarrow{\tilde{f}} \eta_P \xrightarrow{\tilde{g}} \mu_A \to \bar{0}$ of L-fuzzy R-modules with an L-fuzzy projective R-module η_P , is called an L-fuzzy projective presentation of μ_A . Moreover, it has the following form $\bar{0} \to \mu_{0_C} \xrightarrow{\tilde{\alpha}} \mu_{0_P} \xrightarrow{\tilde{\beta}} \mu_A \to \bar{0}$, where $\mu_0 = \chi_{\{0\}}$.

Definition 2.9. ([1], Definition 2.6) For any $\mu_A, \eta_B \in Obj(R\operatorname{-mod}(L))$ and to the *L*-fuzzy projective presentation $\overline{0} \to \mu_{0_C} \xrightarrow{\tilde{f}} \mu_{0_P} \xrightarrow{\tilde{g}} \mu_A \to \overline{0}$ of μ_A . We define

$$F-tor_R^g(\mu_A,\eta_B) = Ker(\hat{f}_* = \hat{f} \otimes 1_{\eta_B} : \mu_{0_C} \otimes_R \eta_B \to \mu_{0_P} \otimes_R \eta_B)$$

3 Main Results

Definition 3.1. For any $\mu_A, \eta_B \in Obj(R\operatorname{-mod}(L))$ and to the *L*-fuzzy projective presentation $\overline{0} \to \eta_{0_C} \xrightarrow{\tilde{f}} \eta_{0_P} \xrightarrow{\tilde{g}} \eta_B \to \overline{0}$ of η_B . We define

$$F-Tor_R^{\tilde{g}}(\mu_A,\eta_B) = Ker(1_{\mu_A} \otimes \tilde{f} : \mu_A \otimes_R \eta_{0_C} \to \mu_A \otimes_R \eta_{0_P}).$$

Theorem 3.2. For any $\mu_A, \eta_B \in Obj(R\operatorname{-mod}(L))$ and to the L-fuzzy projective presentation $\overline{0} \to \mu_{0_C} \xrightarrow{\tilde{f}} \mu_{0_P} \xrightarrow{\tilde{g}} \mu_A \to \overline{0}$ of $\mu_A, \overline{0} \to \eta_{0_D} \xrightarrow{\tilde{k}} \eta_{0_{P'}} \xrightarrow{\tilde{l}} \eta_B \to \overline{0}$ of η_B . If all $\psi \in Hom_R(A, B)$ are admissible R-homomorphisms, then there is an isomorphism

$$\alpha: F-Tor_R^l(\mu_A, \eta_B) \cong F-tor_R^{\tilde{g}}(\mu_A, \eta_B)$$

Proof. By the third chapter 8th section of [4] there is an isomorphism $\beta : Tor_{R}^{\tilde{l}}(\mu_{A}, \eta_{B}) \cong tor_{R}^{\tilde{g}}(\mu_{A}, \eta_{B}).$

We show that β induces the isomorphism α . Let $\beta[\varphi] = [\psi]$, where $\varphi : C \to D$ and $\psi : A \to B$ are *R*-module homomorphisms. It is clear that $\tilde{\varphi} : \mu_{0_C} \to \eta_{0_D}$. Since $\psi \in Hom_R(A, B)$, we have $\tilde{\psi} : \mu_A \to \eta_B$ is an *F*-homomorphism.

Hence, the map α satisfies $\alpha[\tilde{\varphi}] = [\tilde{\psi}]$.

Definition 3.3. An *L*-fuzzy projective resolution of $\mu_A \in Obj(R\operatorname{-mod}(L))$ is an exact sequence $\Theta_P : \cdots \to \theta_{2_{P_2}} \xrightarrow{\tilde{d}_2} \theta_{1_{P_1}} \xrightarrow{\tilde{d}_1} \theta_{0_{P_0}} \xrightarrow{\tilde{\varepsilon}} \mu_A \to \overline{0}$, in which each $\theta_{n_{P_n}}$ is an *L*-fuzzy projective *R*-module.

If Θ_P is an *L*-fuzzy projective resolution of μ_A , then its deleted *L*-fuzzy projective resolution is the *L*-fuzzy complex $\Theta_{P_{\mu_A}} : \cdots \to \theta_{2_{P_2}} \xrightarrow{\tilde{d}_2} \theta_{1_{P_1}} \xrightarrow{\tilde{d}_1} \theta_{0_{P_0}} \to \bar{0}$.

Theorem 3.4. For any $\mu_A \in Obj(R\operatorname{-mod}(L))$, μ_A has an L-fuzzy projective resolution.

Proof. There is an *L*-fuzzy projective module $\theta_{0_{P_0}}$ and exact sequence $\overline{0} \to \theta_{0_{K_0}} \xrightarrow{\tilde{\iota}_0} \theta_{0_{P_0}} \xrightarrow{\tilde{\varepsilon}} \mu_A \to \overline{0}$, where $\theta_{0_{K_0}} = Ker\tilde{\varepsilon}$. Definition 2.8 implies that it has the following form $\overline{0} \to \mu_{0_{K_0}} \xrightarrow{\tilde{\iota}_0} \mu_{0_{P_0}} \xrightarrow{\tilde{\varepsilon}} \mu_A \to \overline{0}$, where $\mu_0 = \chi_{\{0\}}$. Similarly, there is an *L*-fuzzy projective module $\theta_{1_{P_1}}$, a surjection $\tilde{\varepsilon}_1$:

Similarly, there is an *L*-fuzzy projective module $\theta_{1_{P_1}}$, a surjection $\tilde{\varepsilon}_1$: $\theta_{1_{P_1}} \to \mu_{0_{K_0}}$ and an exact sequence $\bar{0} \to \theta_{1_{K_1}} \xrightarrow{\tilde{i}_1} \theta_{1_{P_1}} \xrightarrow{\tilde{\varepsilon}_1} \mu_{0_{K_0}} \to \bar{0}$. Splicing these together, we can define $\tilde{d}_1 : \mu_{0_{P_1}} \to \mu_{0_{P_0}}$ to be the composite $\tilde{i}_0 \cdot \tilde{\varepsilon}_1$. This construction can be iterated for all $n \ge 0$ and the ultimate exact sequence is infinitely long. An *L*-fuzzy projective resolution of μ_A has the following form $\cdots \to \mu_{0_{P_2}} \xrightarrow{\tilde{d}_2} \mu_{0_{P_1}} \xrightarrow{\tilde{d}_1} \mu_{0_{P_0}} \xrightarrow{\tilde{\varepsilon}} \mu_A \to \bar{0}$. The result holds. **Definition 3.5.** Let $T = -\otimes_R \eta_B$, and $F \text{-} Tor_n^R(-, \eta_B) = L^n T$. If an *L*-fuzzy projective resolution of μ_A is $\Theta_P : \cdots \to \mu_{0_{P_2}} \xrightarrow{\tilde{d}_2} \mu_{0_{P_1}} \xrightarrow{\tilde{d}_1} \mu_{0_{P_0}} \to \mu_A \to \bar{0}$, then

$$F-Tor_n^R(\mu_A,\eta_B) = H_n(\Theta_{P_{\mu_A}} \otimes_R \eta_B) = Ker(\tilde{d}_n \otimes 1_{\eta_B})/Im(\tilde{d}_{n+1} \otimes 1_{\eta_B}),$$

where $\tilde{d}_n \otimes 1_{\eta_B} \in Hom_{R(L)}(\mu_{0_{P_n}} \otimes \eta_B, \mu_{0_{P_{n+1}}} \otimes \eta_B)$.

Theorem 3.6. If μ_A is an *L*-fuzzy projective *R*-module, then $F-Tor_n^R(\mu_A, \eta_B) = 0$ for all *L*-fuzzy *R*-module η_B and all $n \ge 1$.

Proof. Since μ_A is an *L*-fuzzy projective module, $\dots \to \overline{0} \to \overline{0} \xrightarrow{d_1} \mu_{0_{P_0}} (= \mu_{0_A}) \xrightarrow{\tilde{\varepsilon}} \mu_A \to \overline{0}$ is an *L*-fuzzy projective resolution of μ_A .

 $\cdots \to 0 \to 0 \xrightarrow{\tilde{d}_1 \otimes 1_{\eta_B}} \mu_{0_A} \otimes_R \eta_B \xrightarrow{\tilde{d}_0 \otimes 1_{\eta_B}} 0 \text{ is a chain complex, therefore} F - Tor_n^R(\mu_A, \eta_B) = 0 (n \ge 1).$

Remark 3.7. Refer to Theorem 4.5 of [11] and Corollary 6.21 of [9], we can get that F-Torⁿ_R(μ_A, η_B) does not depend on the chosen L-fuzzy projective resolution of μ_A .

Theorem 3.8. Let $\dots \to \mu_{0_{P_2}} \xrightarrow{\tilde{d}_2} \mu_{0_{P_1}} \xrightarrow{\tilde{d}_1} \mu_{0_{P_0}} \xrightarrow{\tilde{\varepsilon}} \mu_A \to \bar{0}$ be an *L*-fuzzy injective resolution of μ_A , define $\mu_{0_{K_0}} = Ker\tilde{\varepsilon}$ and $\mu_{0_{K_n}} = Ker\tilde{d}_n$ for $n \ge 1$, we have

$$F-Tor_{n+1}^{R}(\mu_{A},\eta_{B})\cong F-Tor_{n}^{R}(\mu_{K_{0}},\eta_{B})\cong\cdots\cong F-Tor_{1}^{R}(\mu_{K_{n-1}},\eta_{B}).$$

Proof. Let

Since $\dots \to \mu_{0_{P_2}} \xrightarrow{\tilde{d}_2} \mu_{0_{P_1}} \xrightarrow{\tilde{d}_1} \mu_{0_{K_0}} \to \bar{0}$ is an *L*-fuzzy projective resolution of $\mu_{0_{K_0}}$, we have the complex $\dots \to \mu_{0_{P_2}} \otimes \eta_B \xrightarrow{\tilde{d}_2 \otimes 1_{\eta_B}} \mu_{0_{P_1}} \otimes \eta_B \xrightarrow{\tilde{d}_1 \otimes 1_{\eta_B}} \bar{0}$. By Definition 3.5, we have $F - Tor_n^R(\mu_{K_0}, \eta_B) = Ker(\tilde{d}_{n+1} \otimes 1_{\eta_B})/Im(\tilde{d}_{n+2} \otimes 1_{\eta_B}) = F - Tor_{n+1}^R(\mu_A, \eta_B)$. Similarly, $\dots \to \mu_{0_{P_3}} \xrightarrow{\tilde{d}_3} \mu_{0_{P_2}} \xrightarrow{\tilde{d}_2} \mu_{0_{K_1}} \to \bar{0}$ is an *L*-fuzzy projective resolution of $\mu_{0_{K_1}}$, then

$$F-Tor_{n-1}^{R}(\mu_{K_{1}},\eta_{B}) = Ker(\tilde{d}_{n+1}\otimes 1_{\eta_{B}})/Im(\tilde{d}_{n+2}\otimes 1_{\eta_{B}}) = F-Tor_{n+1}^{R}(\mu_{A},\eta_{B}).$$

The remaining isomorphisms are obtained by iteration.

ACKNOWLEDGEMENTS. This research is supported by the Fund of the Key Disciplines in the General Colleges and Universities of Xin Jiang Uygur Autonomous Region(XJEDU2016S080).

References

- [1] R. Ameri and M.M. Zahedi, Fuzzy chain complex and fuzzy homotopy. Fuzzy Sets and Systems 112 (2000) 287-297.
- [2] J.A. Goguen, L-fuzzy sets. Journal of mathematical analysis and applications 18 (1967) 145-174.
- [3] J.A. Goguen, Categories of fuzzy sets: Applications of non-Cantorian set theory. University of California, Berkeley, 1968.
- [4] P.J. Hilton and U. Stammbach, A course in homological algebra. Springer Science and Business Media, 2012.
- [5] S.R. Lopes-Permouth and D.S. Malik, On categories of fuzzy modules. Information Science 52 (1990) 211-220.
- [6] C.V. Negoita and D.A. Ralescu, Applications of fuzzy subsets to system Analysis. Birkhauser Basel, 1975.
- [7] F.Z. Pan, Fuzzy finitely generated modules. Fuzzy Sets and Systems 21 (1987) 105-113.
- [8] A. Rosenfeld, Fuzzy groups. J.Math.Anal.Appl., 35 (1992): 312-317.
- [9] J. Rotman, An introduction to homological algebra. Academic Press, New York, 1979.
- [10] M.M. Zahedi and R. Ameri, Fuzzy exact sequence in category of fuzzy modules. J.Fuzzy Math. 2 (1994) 409-424.
- [11] M.M. Zahedi and R. Ameri, On fuzzy projective and injective modules. J.Fuzzy Math. 3 (1995) 181-190.

Received: May 05, 2018