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ABSTRACT: The object of the present paper is to drive the certain expansion theorems,

which results from interconnected Laplace Transform with Weyl fractional integral

operator involving I-function. On account of general nature of this function a number of

results involving special function can be obtained by specializing the parameters [2].
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1. INTRODUCTION: The Weyl fractional integral is defined in the following form
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; where Re(µ) > 0 …1.1

The Laplace transform of f (t) is denoted by L [f (t)] is defined as
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Here we stabilized a formula exhibiting a relationship between (1.1) and (1.2)

which provides the more effective tools and allow the straight forward derivation of the
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Weyl fractional integral operators associated with Saxena`s I-function, Fox`s H-function

and Meijer`s G-function.

Expansion theorem involving double series have been established earlier by Jain

and Pathan [6, 2001; 7, 2004].

2. I-FUNCTION: In general the Saxena’s I-function [10, 1982] defined with the

following integral on the complex plane:
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… 2.1

              Where )1(w pi ( i = 1,2…r), qi ( i = 1,2…r), m, n are integers satisfying  0≤ n ≤ pi ,

0≤ m ≤ qi ( i = 1,2,…r), r is finite jijijj  ,,  are real positive and jijijj baba ,, all are

complex numbers such that )1()( kavba ihhj   for v, k = 0,1,2… ;h = 1,2, …,m;

i = 1,2, … n.

L is the contour running from σ - i∞ to σ + i∞ (σ is real) in the complex s plane such that

jj avas /)1( 
        j = 1, 2, n; v = 0, 1, 2 …

jj vbs /)(                j = 1, 2, m; v = 0, 1, 2 …

lie to the left hand and right hand sides of L respectively.

3. LAPLACE TRANSFORM OF I-FUNCTION: By the definition of Laplace

transform  [8, 1995; 9, 2012]. we get 
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By changing the order of integration
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            Where

 



 




















r

i

p

nj
jiji

q

mj
jiji

n

j
jj

m

j
jj

ii

sasb

sasb
s

1 11

11

)()1(

)1()(
)(




 … 3.2

Now we shall establish a theorem involving Laplace Transform of Saxena’s I-

function

4. Theorem: Consider the Integral
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Where )(s is given by (3.2) Then under the assumption of absolute convergence

THE FRACTIONAL INTEGRAL OPERATOR AND I-FUNCTION 315



 


 

L
s ds

ps
ss

w
pptItW )1(

)1()(
2

1}:)({ 1




























 )}1,(),(...),{(

}),(...),(),1,{(1
,1,1

,1,11,
,,

1
11 



i

i

ii
qnjijimjj

pnjijinjjnm
rqp bb

aa
p

Ip ….4.2

Proof: We have [1, 1954; 5, 1960, 1997]
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and mkW ,  is usual Whittaker function
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             where H(t) is Heaviside’s function

Now applying the operational pair (1.2) and (4.4) in the Parseval-Goldstein theorem, for

Laplace transform and changing the order of integration we get
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Now substituting I (t) and )(at from (2.1) and (4.3) respectively in (4.5) and upon

performing the indicated integration with the help of [1, 1954] we get the required results.

5. Special cases:

(i) By setting r =1 (2.1) reduces to
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… 5.1

  Equation (5.1) called Fox`s H- function [3, 1965] and in this case results reduces
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(ii) By setting r=1, 1,1  jj  (2.1) reduces to
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… 5.3

  Equation (5.3) called Meijer`s G- function [4, 1946] and in this case results reduces
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Also considering particular values of parameters the results can be converted into

Corresponding results in the form of series.
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