THE FRACTIONAL INTEGRAL OPERATOR AND I-FUNCTION

Dinesh Singh ${ }^{*}$ and Renu Jain**
*Department of Applied Mathematics, School of Engineering and Technology, ITM University Gwalior-474001, India email - dinesh2006_tomar@yahoo.co.in
**School of Mathematics and Allied Sciences, Jiwaji University Gwalior-474001, India email - renujain3@rediffmail.com

Abstract

The object of the present paper is to drive the certain expansion theorems, which results from interconnected Laplace Transform with Weyl fractional integral operator involving I-function. On account of general nature of this function a number of results involving special function can be obtained by specializing the parameters [2].

Key words: Laplace Transform, Mellin Transform, Weyl fractional Integral operator, Ifunction.

Mathematics subject Classification (2000): 44A10, 65D20, 45P05.

1. INTRODUCTION: The Weyl fractional integral is defined in the following form

$$
\mathrm{W}^{\mu}\{f(t): p\}=\frac{1}{\Gamma(\mu)} \int_{p}^{\infty}(t-\mathrm{p})^{\mu-1} f(t) d t ; \quad \text { where } \operatorname{Re}(\mu)>0
$$

The Laplace transform of $f(t)$ is denoted by $L[f(t)]$ is defined as
$L[f(t): p]=\int_{0}^{\infty} e^{-p t} f(t) d t=\mathrm{F}(\mathrm{p})$
Here we stabilized a formula exhibiting a relationship between (1.1) and (1.2) which provides the more effective tools and allow the straight forward derivation of the

Weyl fractional integral operators associated with Saxena`s I-function, Fox`s H-function and Meijer`s G-function.

Expansion theorem involving double series have been established earlier by Jain and Pathan [6, 2001; 7, 2004].
2. I-FUNCTION: In general the Saxena's I-function [10, 1982] defined with the following integral on the complex plane:

$$
\begin{align*}
I(t) & =I_{p_{i}, q_{i}, r}^{m, r}[t]=I_{p_{i}, q_{i}, r}^{m, n}\left[t\left[\begin{array}{lll}
\left\{\left(a_{j}, \alpha_{j}\right)_{1, n}\right. & \ldots & \left.\left(a_{j i}, \alpha_{j i}\right)_{n+1, p_{i}}\right\} \\
\left\{\left(b_{j}, \beta_{j}\right)_{1, m}\right. & \ldots & \left.\left(b_{j i}, \beta_{j i}\right)_{n+1, q_{i}}\right\}
\end{array}\right]\right. \\
& =\frac{1}{2 \pi w} \int_{L}\left\{\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\beta_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+\alpha_{j} s\right)}{\sum_{i=1}^{r}\left\{\prod_{j=m+1}^{q_{i}} \Gamma\left(1-b_{j i}+\beta_{j i} s\right) \prod_{j=n+1}^{p_{i}} \Gamma\left(a_{j i}-\alpha_{j i} s\right)\right\}}\right\} t^{s} d s
\end{align*}
$$

Where $w=\sqrt{(-1)} \mathrm{p}_{\mathrm{i}}(\mathrm{i}=1,2 \ldots \mathrm{r}), \mathrm{q}_{\mathrm{i}}(\mathrm{i}=1,2 \ldots \mathrm{r}), \mathrm{m}, \mathrm{n}$ are integers satisfying $0 \leq \mathrm{n} \leq \mathrm{p}_{\mathrm{i}}$, $0 \leq \mathrm{m} \leq \mathrm{q}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots \mathrm{r}), \mathrm{r}$ is finite $\alpha_{j}, \beta_{j} \alpha_{j i}, \beta_{j i}$ are real positive and $a_{j}, b_{j} a_{j i}, b_{j i}$ all are complex numbers such that $a_{j}\left(b_{h}+v\right) \neq \beta_{h}\left(a_{i}-1-k\right)$ for $\mathrm{v}, \mathrm{k}=0,1,2 \ldots ; \mathrm{h}=1,2, \ldots, \mathrm{~m}$; $\mathrm{i}=1,2, \ldots \mathrm{n}$.

L is the contour running from $\sigma-\mathrm{i} \infty$ to $\sigma+\mathrm{i} \infty$ (σ is real) in the complex s plane such that

$$
\begin{array}{ll}
s=\left(a_{j}-1-v\right) / a_{j} & \mathrm{j}=1,2, \mathrm{n} ; \mathrm{v}=0,1,2 \ldots \\
s=\left(b_{j}+v\right) / \beta_{j} & \mathrm{j}=1,2, \mathrm{~m} ; \mathrm{v}=0,1,2 \ldots
\end{array}
$$

lie to the left hand and right hand sides of L respectively.
3. LAPLACE TRANSFORM OF I-FUNCTION: By the definition of Laplace
transform $[8,1995 ; 9,2012]$. we get $\quad L[I(t): p]=\int_{0}^{\infty} e^{-p t} I(t) d t$

$$
=\int_{0}^{\infty} e^{-p t} \frac{1}{2 \pi w} \int_{L}\left\{\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\beta_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+\alpha_{j} s\right)}{\sum_{i=1}^{r}\left\{\prod_{j=m+1}^{q_{i}} \Gamma\left(1-b_{j i}+\beta_{j i} s\right) \prod_{j=n+1}^{p_{i}} \Gamma\left(a_{j i}-\alpha_{j i} s\right)\right\}}\right\} t^{s} d s d t
$$

By changing the order of integration

$$
\begin{align*}
& =\frac{1}{2 \pi w}\left[\int_{L}\left\{\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\beta_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+\alpha_{j} s\right)}{\sum_{i=1}^{r}\left\{\prod_{j=m+1}^{q_{i}} \Gamma\left(1-b_{j i}+\beta_{j i} s\right) \prod_{j=n+1}^{p_{i}} \Gamma\left(a_{j i}-\alpha_{j i} s\right)\right\}}\right\}_{0}^{\infty} e^{-p t} t^{s} d t\right] d s \\
& =\frac{1}{2 \pi w} \int_{L}\left\{\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\beta_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+\alpha_{j} s\right) \Gamma(s+1)}{\sum_{i=1}^{r}\left\{\prod_{j=m+1}^{q_{i}} \Gamma\left(1-b_{j i}+\beta_{j i} s\right) \prod_{j=n+1}^{p_{i}} \Gamma\left(a_{j i}-\alpha_{j i} s\right)\right\} p^{s+1}}\right\} d s \\
& Q p)=\frac{1}{2 \pi w} \int_{L} \frac{\theta(s) \Gamma(s+1)}{p^{s+1} d s=\hat{\mathrm{I}}(\mathrm{p})} \\
& \theta(s)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\beta_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+\alpha_{j} s\right)}{\sum_{i=1}^{r}\left\{\prod_{j=m+1}^{q_{i}} \Gamma\left(1-b_{j i}+\beta_{j i} s\right) \prod_{j=n+1}^{p_{i}} \Gamma\left(a_{j i}-\alpha_{j i} s\right)\right\}}
\end{align*}
$$

Now we shall establish a theorem involving Laplace Transform of Saxena's Ifunction
4. Theorem: Consider the Integral

$$
\emptyset p)=\frac{1}{2 \pi w} \int_{L} \frac{\theta(s) \Gamma(s+1) t^{s}}{p^{s+1}} d s
$$

Where $\theta(s)$ is given by (3.2) Then under the assumption of absolute convergence

$$
\begin{align*}
& W^{\mu}\left\{t^{-\lambda} I(t): p\right\}=p^{\mu-\lambda-1} \frac{1}{2 \pi w} \int_{L} \frac{\theta(s) \Gamma(1-\mu+\lambda+s)}{\Gamma(1+\lambda+s) p^{s}} d s \\
& =p^{\mu-\lambda-1} I_{p_{i+1}, q_{i+1}, r}^{m, n+1}\left[\frac{1}{p} \left\lvert\, \begin{array}{ccc}
\left\{(\mu-\lambda, 1),\left(a_{j}, \alpha_{j}\right)_{1, n}\right. & \ldots & \left.\left(a_{j i}, \alpha_{j i}\right)_{n+1, p_{i}}\right\} \\
\left\{\left(b_{j}, \beta_{j}\right)_{1, m}\right. & \ldots & \left.\left(b_{j i}, \beta_{j i}\right)_{n+1, q_{i}}(-\lambda, 1)\right\}
\end{array}\right.\right]
\end{align*}
$$

Proof: We have [1, 1954; 5, 1960, 1997]
$L\left[t^{\mu-1}(t+a)^{-\lambda}: p\right]=\Gamma(\mu) p^{(\lambda-\mu-1) / 2} p^{(\lambda-\mu-1) / 2} e^{a p / 2} W_{k, m}(a p)$

$$
=\phi(a p)
$$

Where $\quad k=\frac{(1-\mu-\lambda)}{2}, m=\frac{(\mu-\lambda)}{2}$
and $W_{k, m}$ is usual Whittaker function
$L\left[(t-a)^{\mu-1} t^{-\lambda} H(t-a): p\right]=e^{-a p} \phi(a p)$
where $\mathrm{H}(\mathrm{t})$ is Heaviside's function
Now applying the operational pair (1.2) and (4.4) in the Parseval-Goldstein theorem, for Laplace transform and changing the order of integration we get

$$
\begin{align*}
\int_{a}^{\infty} t^{-\lambda}(t-a)^{\mu-1} I(t) d t & =\int_{0}^{\infty} t^{-\lambda}(t-a)^{\mu-1} g(t) H(t-a) d t \\
& =\int_{0}^{\infty} e^{-a t} \phi(a t) I(t) d t
\end{align*}
$$

Now substituting I (t) and $\phi(a t)$ from (2.1) and (4.3) respectively in (4.5) and upon performing the indicated integration with the help of $[1,1954]$ we get the required results.

5. Special cases:

(i) By setting $\mathrm{r}=1$ (2.1) reduces to

$$
H_{p, q}^{m, n}[t]=\frac{1}{2 \pi w_{L}} \int_{L}\left\{\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\beta_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+\alpha_{j} s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+\beta_{j} s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-\alpha_{j} s\right)}\right\} t^{s} d s
$$

Equation (5.1) called Fox`s H- function [3, 1965] and in this case results reduces

$$
W^{\mu}\left\{t^{-\lambda} H(t): p\right\}=p^{\mu-\lambda-1} H_{p+1, q+1}^{m, n+1}\left[\frac{1}{p} \left\lvert\, \begin{array}{ll}
(\mu-\lambda, 1), & \left(a_{i}, \alpha_{i}\right)_{1, p} \\
\left(b_{j}, \beta_{j}\right)_{1, q}, & (-\lambda, 1)
\end{array}\right.\right]
$$

(ii) By setting $\mathrm{r}=1, \alpha_{j}=1, \beta_{j}=1$ (2.1) reduces to
$G_{p, q}^{m, n}[t]=\frac{1}{2 \pi w} \int_{L}\left\{\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-s\right)}\right\} t^{s} d s$
Equation (5.3) called Meijer`s G- function [4, 1946] and in this case results reduces
$W^{\mu}\left\{t^{-\lambda} G(t): p\right\}=p^{\mu-\lambda-1} G_{p+1, q+1}^{m, n+1}\left[\frac{1}{p} \left\lvert\, \begin{array}{c}\mu-\lambda, a_{1} \ldots a_{p} \\ b_{1} \ldots b_{q},-\lambda\end{array}\right.\right]$
Also considering particular values of parameters the results can be converted into Corresponding results in the form of series.

REFERENCES

1. A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi; Tables of Integral Transform Vol. 1, Vol 2, M.Graw, Hill, New York (1954).
2. Anjali Gupta, and C. L. Parihar; On Solution of Generalized Kinetic Equations of Fractional Order, Bol. Soc. Paran. Mat. Vol. 32 (2014).
3. C. Fox; A Formal Solution of Certain Dual Integral Equations, Trans. Amer. Math. Soc., 119,(1965).
4. C.S. Meijer; On the G-function,Proc. Nat, Acad. Wetensch, 49 (1946).
5. E.D. Rainville; Special function, Chelsea publ. co. boronx, New York (1960, 1997).
6. Rashmi Jain, and M. A. Pathan; On theorem involving Laplase transform Weyl fractional integral operators, proc. Of second international conference of the society for special function and their application 2 (2001).
7. Rashmi Jain, and M. A. Pathan; On Weyl fractional integral operators, Tamkang Journal of mathematics volume 35 (2004).
8. Renu Jain, and Deepak Jain; Saxena's I-function and Heat conduction in rod under specific boundary conditions. Journal Indian Acd. Math. Vol. 17, No. 1 (1995).
9. Renu Jain, and Dinesh Singh; An Integro-Differential Equation Of Volterra Type With Sumudu Transform, Mathematica Aeterna ,Vol. 2 (2012), No. 6, 541-547.
10. V.P. Saxena; Fonmal solution of certaion new pair of dual integral eqations involving Hfunction proc. Acad. Sci. India. 52 A III (1982).
