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Abstract

In this paper, we have derived an explicit solution to an infinite
countable system of linear ordinary differential equations with constant
coefficients. We applied some mathematical techniques and Mathemat-
ical Induction method and have found the solution to the system under
consideration when the coefficients matrix is bidiagonal.
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1 Introduction

Infinite linear system of ordinary differential equations (ODEs) can model a
wide range of problems in science and engineering. Unlike finite linear systems
of ODEs, which are widely studied by numerous analytical and numerical ap-
proaches [1, 2, 3, 4, 5, 6, 7, 8], infinite linear systems which are considered to
be a very important special case of ODEs in banach spaces are still suffering
from the lack of wide and satisfactorlily developments up to now. Although,
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very important researchers for studying those systems have appeared. The
stability and existence of the solution of infinite systems have been studied
and applied in mechanics [9, 10, 11, 12]. Theories of branching proceses, neu-
ral nets, and dissociation of polymers are also studied by considering infinte
systems of ODEs [13, 14, 15, 16]. Properties of infinite systems of the first or-
der with auxiliary boundary conditions are studied in [17]. Those systems can
also play a very important rule in solving some problems involving parabolic
partial differtianal equations [18, 19]. Many applications of the system under
consideration are found in [12, 20, 21].

In this paper, we will find an explict solution of the following system of ODEs:

a(t) = An(t). (1)

where A is an infinite lower bi-diagonal matrix given by:

—0q 0 0 0

a’l _0'2 O .« .. . e
e ,

0 0 Q. —O0f 0

and n(t) is an infinite column vector in the form:

nq (t)
N9 (t)
nt)=|

with ny(0) is given as an initial condition, the coefficients a;, o; are con-
stants, and o; # o0; if © # j.
In the next section, an important lemma is proved and used to find the solu-
tion of system (1).
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2 Analysis and Main Results

In the following, we present and prove a lemma that is used to derive the
solution of system (1).

Lemma 2.1 Let A = {\; € R:i=1,2,...} be an infinite sequence, such
that for i # j and ¢, j € N, \; # A;. Let {1, o, oo , i } be any finite subset
of size n > 2 of A. Then, for all n > 2,

1
(2 — pa)(ps — pen) - - (o — 1)
1
+(,Ul — o) (s — p2) - - . (fn — pi2)
4.
L 1
(1 = pn-1)) (2 — pn-1)) - - - (0 — f(n—1))
-1

N (,Ul - ,Un)(,uz - ,Un) . (,U(n—l) — Mn). (2)

Proof :

We will prove this lemma by Mathematical Induction. Let S be the set of
all n € N for which the formula is true.
First we prove (2) for n = 2. For any i # 7,

1 -1

(i = p) (g — i)

Therefore 2 € S.
We assume that it is true for n = m, that is, let {uq, po, ........ , lm} be any
subset of size m of S. We have

1
(2 — pa)(ps — 1) - - (o — pi1)
1
T = )t — 112) G — 1)
T
N 1
(f1 = frm—1)) (2 — fom=1)) - - - (am — Fom—1))
1

- (,Ul - :Um)(,u2 - ,Um) - (,U(m—l) — ,Um)‘ (3)
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Multiplying both sides of (3) by
(:Ul - :Um)(lu2 - :Um) s (:U(m—l) - ,Um)a

we get

(2 = ) (3 = fim) - - - (:U(M—l) — Him)
(2 = pa)(ps = p1) - - - (Bm—1) — )

(1 = ) (3 = fim) - - - (:U(M—l) — Him)
(11 = p2)(ps = pi2) - - - (Bm—1) — p12)

+

(1 = ) (2 = o) - - - (fogm—2) — Hm) -
(1 — :U(m—l))(,u2 - M(m_1)) . (M(m_g) _ :u(m—l)) =1. (4)

Now consider n = m + 1. In other words, we have to prove the identity

1
(2 — p1)(p3 — ) - - - (,U(m+1) — 1)
1
i (1 — p2) (b3 — p12) - - - (Wmt1) — f12)
4.
N 1
(11— ) (p2 = fhm) - - - (,U(m+1) — fim)
~1
= (5)

(1 = prmr1)) (2 = fna)) - (o = Hmt1))
Multiply both sides of (5) by

(11 = Hme)) (B2 = fnt1)) - - (B = Bma1)),

we get,

(12 — pmt1) (B3 — Bm+1)) - - - (B — Hm+1))
(2 — 1) (3 — 1) - (fom — 1)

(Ml - M(m+1))(M3 - M(m+1)) cee (Mm - M(m+1))

+
(1 — o) (3 — p12) - (fom — pi2)
+......
+(M1 = tman) (B2 = pomsn)) - - (Bm—1) = P -1 (6)

(11— ) (2 = fm) - - - (:u(m—l) — Him)
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We move the right hand side of (3) to the left hand side to get

1
(p2 — pa)(ps — 1) -+ - (pm — 1)
1
+(M1 — pi2) (3 — p12) - - (fm — f12)
+ .
n 1
(11 = pm—1)) (2 = fm—1)) - - - (. = Hm—1))

1
T — o) (12 — ) -~ oty — i)

~0. (7)

Then we multiply (7) by the factor

(2 — pm+1)) (B3 — fm+1)) - - (B — Hm+1))

After the multiplication we keep the first term in the left hand side and
move the rest of the terms to the right hand side; we get,

(k2 = puma1)) (B3 — frma)) - - (o — Pman))
(2 = p1) (w3 — pa) - (pm — 1)

)(Ms — Wmt1) (B4 = fmtn)) - (B = Hmr1))
(p1 — p2)(pz — p12) - - - (o — p12)

—(p2 — H(m+1)

)(Mz - M(m+1))(ﬂ4 - M(m+1)) cee (Mm - M(m+1))

— (3 — Lm+1) (pr — ps) (pg — p13) - - . (p — 13)

(2 = Pma1) (B3 = fgmr1)) - - - (B — Bm1))
(11 = pm=1)) (2 = Bm=1)) - - - (m — Hm—1))

_<:u(m 1) — ,u(m-i-l))

)(ua — fi(mr1)) (13 = fma1)) - - (m—1) — u(m+1))_ (8)

_<:um — H(m+1
ey (11 = pan) (pt2 = fan) - - (Pogm—1) — Hm)

The left hand side of (8) is the first term of left hand side of (6). We replace
the first term of left hand side of (6) by the right hand side of (8). Then, the
left hand side of (6) becomes:

(113 = pmt)) - - - (e — Hma1))
H1 — )(M3— 2) ( /~L2)

X
(1} — _ (p2 — m+1) A fm = H(m11))
[~ = prmen) G = e Y s — 110

[— (2 = fmrn)) + (1 = Bty (
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(12 = pimen) - - - (B — Pmr1))
(,Ul - ,U(m_n) S (,Um - ,U(m_n)

= (tn-1) = Bm+1)) + (1 = Lint))]

(2 = pms1)) - - (Hm=1) = [me1))
g1 = p) (pi2 = i) - - (fh(m—1) = fim)

_|_[_(,um — ,U(m-i-l)) + (,Ul - ,U(m-i-l))](

(3 — Bm+1)) (Ba — Pent1)) - - (B — Bmt1))
(3 — p2)(pra — pi2) - - (fm — pi2)
(2 — M(m+1))(l~b4 — M(m+1)) o — M(m+1))
(2 — p3)(pra — p3) - - (pm — f13)

+

(K2 = pma1)) (3 = figmr1)) - - - (B — Pm1))

+
(2 = pm—1)) (B3 = fgm=-1)) - - - (B — W(m—1))

(2 = pme) (13 = Hmen)) - - (Bn—1) = Him+1))
(12— ) (113 = fm) - - - (fim—1) = Him)

Since the induction hypothesis is assumed true for any subset of A of size m,
and expression (9) deals with {ug, i3, ........ , m+1) } which has size m, therefore
by equation (4), expression (9) equals 1. This proves that (6) holds. Therefore
m + 1 € S. This is the end of the proof.

+

(9)

Theorem 2.2 The solution of system (1) is given by

0 . 0 6—O'kt e_o'krflt
t) = Ik Mg
n(t) = m(0)e " + ap_impy )[O_k_l — +ak—o—k_1}
)
+ar_10_oN_ {
FotTh 22 (Uk—l —Uk—2)(0k—0'k—2)
6—0k,1t e—o'kt
+ + }
(Ok—2 — 0p—1)(0k —0k—1)  (Ok—2 — o)) (k-1 — O%)

e—o’1t

+ap_1aip_9 ... a1n1(0) |:(O'2 _ 0-1)(0-3 — 0'1) .. (O'k — 0'1)

+(<71 — 03)(03 —032) ... (0% — 02)
+. -
+(01 —op)(og —0op) ... (op_1 — gk)} (10)

Proof :
We will prove this also by Mathematical Induction. To find n4(t), from the
first equation of the system we have

71:1 (t) = —0o1n (t)
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Solve for ny(t), we have

ni(t) = ny(0)e .

To solve for ny(t), from the second equation of the system, we have

ng(t) = alnl(t)—agng(t).

Since

d
a(ng(t)e"zt) = an(t)e”™

we have

t
no(t) = n2(0)6_02t+a16_”2t/ n1(0)e T dr
0

1 — e—(al—ag)t:|
(01— 02)
6—0’2t e—olt :|

(01 — 09) - (09 —01)

= n9(0)e” % + ayny (0)e” ™ {

— ny(0)e 7 + alnl(()){

Now, we assume that the formula (10) is true for ny(t), so we have

e—O'kt e_o'kflt
nk( ) nk(O)e + ap_1Ng 1(0) (O'k_1 — O'k) + (O'k — Uk_l)

e—o'kfgt

an (0
+ak 1Ak —2M 2( >|:(O-k;—l —Uk—Q)(Uk _Uk—2)

e—O'k,lt e—O'kt :|

+(0'k—2 - Uk—1)(0'k - Uk—l) * (Uk—2 - Uk)(O'k—l - Uk)

e—o'k,it

+ar_1Qr_9...ap_;Ne_;(0 |:
k—10k—2 k—iltk Z( ) (Uk—i-i—l _O-k_i)(o-k_i+2—O’k_i)...(ak_Uk—i)

e Ok—it1t

_l_

(Uk—i - Uk—i+1)(ak—i+2 - Uk—i-i—l) e (Uk - Uk—i—i—l)
+......

e—o'kt

+

(Uk—i - Uk)(ak—i+l - Uk) cee (Uk—l - Uk)
+.....

e—o’1t

_1Qk—2 . .. 0
Ttz a1 (0) (09 —01)(03 —01) ... (0K — 01)

6—0’2t

+ (01— 09)(03 — 09) ... (0x — 02)
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6—O'kt

* (01 —o)(og —0ok) ... (Op_1 — ok) ]

th

We are going to prove it is true for ny(t). From the (k + 1)™ equation of the

system we have

M1 (t) = apng(t) — opranea (1),

t
Mep1 () = 1pgr (0)e™7H18 4 gye=ort / (7)1 d (12)
0

To evaluate the integral of ny(7) in (12), we only need to evaluate the integral
of the ith term of ng(¢) in (11):

t
—opaql
ape ok /0 <ak_1ak_2 .. .ak—ink—i(o)

6(_0'k7i+0'k+1)7

(Oh—it1 — Ok—i)(Oh—it2 — Ok—i) - . . (Oh — O—s)
6(_0'k7i+1+0'k+1)7

_'_
(Oh—i = Oh—it1)(Oh—it2 — Ok—it1) - - - (Oh — Oh—it1)

e(—crk +okt1)T

+(Uk_,- — o) (Ok—iz1 —0ok) ... (Op_1 — Uk)DdT

= apag—10k—2 - - -ak—ink—i<0)<

e—O'k,it

(Uk—i+1 - Uk—i)<ak—i+2 - Uk—i) ce (Uk - Uk—i)(0k+1 - Uk—i)

e Tk—it+1t

+

(Oh—i = Oh—it1)(Oh—it2 = Oh—it1) - - (Ok — Oh—it1) (kg1 — Op—it1)
+.o...

e—O'kt

_|_

(Uk—i - Uk)(ak—i—i—l - Uk) . (Uk—l - Uk)(0k+1 - Uk)
_e—a'k+1t 1

(Uk—i+1 - Uk—i)(ak—i+2 - Uk—i) e (Uk - Uk—i)(0k+1 - Uk—i)

n 1

(Uk—i - Uk—i+1)(0'k—i+2 - Uk—i—i—l) e (Uk - Uk—i+1)(ak+1 - Uk—i—i—l)

n ! ) (13)

(Uk—i - O'k)(o'k—i-i-l - Uk) cee (Uk—l - Uk)(0k+1 - Uk)

(11)
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Applying lemma 1, the last term between two brackets in (13) equals

—1

(Uk—i - Uk+1)((7k—i+1 - Uk—i—l) . (Uk - O'k—l—l).

Therefore, the right hand side of equation (13) can be simplified as

e—O'k,it

i)
k1 k=2 il Z( ) (Uk—i-i-l _Uk—i)(o'k—i+2 _Uk—i)---(ak+1 _Uk—i>

e Tk—it1t
+
(Uk—i - Uk—i+1)(0'k—i+2 - Uk—i-i—l) ce (Uk+1 - Uk—i—i—l)
+ .
e—O'kt
_l_

(Uk—i - Uk)(O’k—iH - Uk) . (Uk+1 - Uk)

e—o'k+1t
+(Uk—i - Uk—l—l)(ak—i—l—l - Uk+1) . (Uk - Uk+1))'

This completes the proof.

3 Conclusions

In this paper, an explicit solution to an infinite countable system of Ordinary
Linear Differential Equations with constant coefficients is found. For this pur-
pose, a theorem is proved. A very important lemma, which can be used in a
very wide range of Mathematical fields, is used to prove this theorem. We also
were able to prove the lemma.
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