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Abstract

We examine convergent representations for the sum of Bessel func-
tions ∞∑

n=1

Jµ(na)Jν(nb)

nα

for µ, ν ≥ 0 and positive values of a and b. Such representations enable
easy computation of the series in the limit a, b→ 0+. Particular atten-
tion is given to logarithmic cases that occur both when a = b and a 6= b
for certain values of α, µ and ν. The series when the first Bessel function
is replaced by the modified Bessel function Kµ(na) is also investigated,
as well as the series with two modified Bessel functions.
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1. Introduction We consider the sum1

Sµ,ν(a, b) = Λ
∞∑
n=1

Jµ(na)Jν(nb)

nα
, Λ =

2µ+ν

aµbν
, (1.1)

where Jν(z) is the Bessel function of the first kind and the multiplicative factor
Λ is added for convenience. It is supposed that the orders µ, ν ≥ 0 and that
α is a real parameter. It will be further assumed that a and b are positive
real quantities. The sum converges absolutely for α > 0, although when a 6= b
convergence (non-absolute) is assured when α > −1. Extension of the results
to complex µ, ν and α is straightforward.

Sums involving the product of m J-Bessel functions have been termed m-
dimensional Schlömilch-type series by Miller [4]. Series of the type in (1.1)

1To avoid overburdening the notation we omit the parameter α in Sµ,ν(a, b).
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have been encountered in connection with the study of the electromagnetic
behaviour of cylindrical antennas in rectangular waveguides. When a = b,
the above sum has been investigated by Williamson [12] under the restriction
µ + ν > α. This author employed Poisson’s summation formula to derive
a form suitable for computation when a is small. In the case ν = 1

2
and

a = π, it was possible to deduce the value of an infinite sum involving the 4F3

hypergeometric series. More recently, Dominici et al. [1] evaluated (1.1) in the
case α−µ−ν = −2N , where N is a non-negative integer. These authors used
the representation of the J-Bessel function in terms of an integral involving
the Gegenbauer polynomial. The case of a sum involving a single J-Bessel
function has been considered in [10], and more recently in [8].

The numerical evaluation of (1.1) becomes difficult in the limit a, b→ 0+ on
account of the resulting slow convergence of the series. In this paper we obtain
a representation of the above series by means of the Mellin transform approach
subject to no additional restrictions on the parameters α, µ and ν, other than
that of the above-mentioned condition on α for convergence of the series. This
approach as a means of dealing with slowly convergent sums was advocated
by Macfarlane [3] and is discussed, for example, in the book [7, Section 4.1.1].
We also consider the special case when α−µ−ν is a positive odd integer, both
when a = b and a 6= b, when logarithmic terms can appear. We conclude with
an investigation of the series when one of the J-Bessel functions is replaced
by a modified K-Bessel function, and also series involving two modified Bessel
functions.

2. The series Sµ,ν(a, b) when a = b We first discuss the sum in (1.1)
when a = b, where we write Sµ,ν(a) ≡ Sµ,ν(a, a). Let us introduce the quantity

ϑ := α− µ− ν;

positive odd integer values of ϑ will be seen to produce logarithmic terms in
the expansion of Sµ,ν(a) and Sµ,ν(a, b). Then we have

Sµ,ν(a) = 2α(1
2
a)ϑ

∞∑
n=1

Jµ(na)Jν(na)

(na)α
= 2α(1

2
a)ϑ

∞∑
n=1

f(na) (α > 0), (2.1)

where

f(x) =
Jµ(x)Jν(x)

xα
.

From the elementary properties of the Bessel function it is seen that f(x) =
O(x−ϑ) as x → 0+ and f(x) = O(x−α−1) as x → +∞. If we introduce the
Mellin transform of f(x) by

F (s) =
∫ ∞
0

ts−1f(t) dt =
∫ ∞
0

Jµ(t)Jν(t)

tλ
dt, λ := α + 1− s
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valid in the strip of analyticity ϑ < <(s) < α + 1, we have by the Mellin
inversion theorem (see, for example, [7, p. 80])

f(x) =
1

2πi

∫ c+∞i

c−∞i
F (s)x−sds, ϑ < c < α + 1. (2.2)

We observe that, from the convergence condition in (2.1), the right-hand
boundary of the strip of analyticity <(s) = α + 1 > 1 and the left-hand
boundary is <(s) ≤ α. Then we obtain [7, p. 118]

Sµ,ν(a) =
2α(1

2
a)ϑ

2πi

∫ c+∞i

c−∞i
F (s) ζ(s) a−sds, max{1, ϑ} < c < α + 1, (2.3)

where ζ(s) denotes the Riemann zeta function.
From [11, p. 403] we have

F (s) =
Γ(λ)Γ(1

2
µ+ 1

2
ν+ 1

2
− 1

2
λ)

2λΓ(1
2
λ+ 1

2
µ− 1

2
ν+ 1

2
)Γ(1

2
λ+ 1

2
µ+ 1

2
ν+ 1

2
)Γ(1

2
λ+ 1

2
ν− 1

2
µ+ 1

2
)

(2.4)

for µ + ν + 1 > <(λ) > 0. It is seen that these conditions correspond to the
strip of analyticity in (2.2). The integrand in (2.3) has simple poles at s = 1
resulting from ζ(s) and at

sm = ϑ− 2m, m = 0, 1, 2, . . . (2.5)

from the numerator Gamma function, except if ϑ is a positive odd integer
when the pole at s = 1 is double. There is also a sequence of simple poles
on the right of the integration path resulting from Γ(λ) at s = α + 1 + m,
m = 0, 1, 2, . . . .

We consider the integral taken round the rectangular contour with vertices
at c ± iT , −d ± iT , where d = 2M − ϑ − 1 > 0 so that the side parallel to
the imaginary axis passes midway between the poles at s = ϑ − 2M + 2 and
s = ϑ − 2M . The contribution from the upper and lower sides s = σ ± iT ,
−d ≤ σ ≤ c as T →∞ can be estimated by use of the standard results

|Γ(σ ± it)| ∼
√

2πtσ−
1
2 e−

1
2
πt (t→ +∞), (2.6)

which follows from Stirling’s formula for the gamma function, and [2, p. 25]

|ζ(σ ± it)| = O(tµ̂(σ) logβ t) (t→ +∞)

where µ̂(σ) = 0 (σ > 1), 1
2
− 1

2
σ (0 ≤ σ ≤ 1), 1

2
−σ (σ ≤ 0) and β = 0 (σ > 1),

1 (σ ≤ 1). Then it follows that

|F (σ ± it)| = O((1
2
t)−

1
2 )

Γ(1
2
(µ+ν+1)− 1

2
(α+1−σ)+ 1

2
it)

Γ(1
2
(µ+ν+1)+ 1

2
(α+1−σ)− 1

2
it)

= O((1
2
t)σ−α−

3
2 )

(2.7)
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as t→ +∞. Hence the modulus of the integrand on these horizontal paths is
O(T ξ log T ) as T →∞, where ξ = σ + µ̂(σ)− α− 3

2
. Taking into account the

different forms of µ̂(σ) and the fact that α > 0, we obtain the order estimate

O(T−
1
2 log T ) so that the contribution from these paths vanishes as T →∞.

Displacement of the integration path over the pole at s = 1, where ζ(s)
has residue 1, and the first M poles of the sequence {sm} we find (provided ϑ
is not a positive odd integer)

Sµ,ν(a) = 2α−1(1
2
a)ϑ−1F (1) +

M−1∑
m=0

Am(1
2
a)2m + 2µ+νRM , (2.8)

where

Am =
(−)m

m!

Γ(1 + µ+ ν + 2m) ζ(ϑ− 2m)

Γ(1 + µ+m)Γ(1 + ν +m)Γ(1 + µ+ ν +m)
(2.9)

and the remainder RM is given by

RM =
aϑ

2πi

∫ −d+∞i
−d−∞i

F (s) ζ(s) a−sds =
a2M−1

2π

∫ ∞
−∞

a−itF (−d+ it)ζ(−d+ it) dt.

(2.10)
We use the functional relation [6, p. 603]

ζ(s) = 2sπs−1ζ(1− s)Γ(1− s) sin 1
2
πs, (2.11)

together with the fact that |ζ(σ ± it)| ≤ ζ(σ) when σ > 1. Then

|ζ(ϑ−2M+1+it)| ≤ (2π)ϑ−2M+1

π
|ζ(2M−ϑ−it)| |Γ(2M−ϑ−it)| cosh(1

2
π|t|)

≤ πϑ−2M ζ(2M−ϑ) g(t), (2.12)

where

g(t) = π−
1
2 |Γ(M− 1

2
ϑ− 1

2
it)Γ(M+ 1

2
− 1

2
ϑ− 1

2
it)| cosh(1

2
π|t|)

= O((1
2
|t|)2M−ϑ−

1
2 ) (t→ ±∞)

upon application of the duplication formula for the gamma function and use
of (2.6). From (2.7) we therefore have

|F (ϑ−2M+ 1+it)| = O((1
2
|t|)ϑ−2M−α−

1
2 ) (t→ ±∞).

Then, since ζ(2M − ϑ) = O(1) for large M , the modulus of the integrand in
(2.10) is O((|t|/2)−α−1) as t→ ±∞ and the integral converges (α > 0) and is
independent of a. Consequently we find that |RM | = O((a/π)2M), and hence
RM → 0 as M →∞ provided 0 < a < π.
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We therefore see that the upper limit of the summation index on the right-
hand side of (2.8) can be replaced by ∞ provided 0 < a < π.

2.1. Alternative form of the coefficients Am

If we make use of (2.11) to express the coefficients Am in (2.9) in terms of a
zeta function of positive argument for large m, together with the duplication
formula for the gamma function, we find

Am = 2α−1
sin 1

2
πϑ

π

(
π

2

)ϑ−2m−1
A′m,

where

A′m =
Γ(1

2
+ 1

2
µ+ 1

2
ν+m)Γ(1+ 1

2
µ+ 1

2
ν+m)Γ(m+ 1

2
− 1

2
ϑ)Γ(m+1− 1

2
ϑ) ζ(2m+1−ϑ)

m!Γ(1+µ+m)Γ(1+ν+m)Γ(1+µ+ν+m)
.

This yields the expansion in the alternative form (provided ϑ is not a non-
negative integer)

Sµ,ν(a) = F̂ (1) + 2α−1(1
2
π)ϑ−1

sin 1
2
πϑ

π

∞∑
m=0

A′m

(
a

π

)2m

, (2.13)

which was obtained in an equivalent form2 in [12]. In this last reference the
condition µ + ν > α (that is, ϑ < 0) was imposed; this results in the infinite
sequence of poles sm in (2.5) lying entirely in <(s) < 0 so that the poles are
all simple.

Application of the well-known results ζ(2m + 1 − δ) = O(1) and Γ(a +
m)/Γ(b + m) ∼ ma−b for large m shows that A′m ∼ m−α−1 as m → ∞. We
thus have confirmation that the sums in (2.14) and (2.13) converge (since
α > 0) for the wider domain 0 < a ≤ π. It is conjectured that a more refined
treatment of the remainder integral RM in (2.10), which takes into account
the oscillatory nature of the integrand, would produce a more precise estimate
that included, in addition to the basic order term (a/π)2M , a negative power
of M . This would yield RM → 0 as M →∞ for 0 < a ≤ π.

Then we obtain the following result:

Theorem 1. Let ϑ = α − µ − ν 6= 0, 1, 2, . . . and α > 0. Then we have the
convergent expansion

Sµ,ν(a) = F̂ (1) +
∞∑
m=0

Am(1
2
a)2m, (2.14)

valid for 0 < a ≤ π, where

F̂ (1) =
(1
2
a)ϑ−1Γ(α)Γ(1

2
µ+ 1

2
ν+ 1

2
− 1

2
α)

2Γ(1
2
α+ 1

2
µ− 1

2
ν+ 1

2
)Γ(1

2
α+ 1

2
µ+ 1

2
ν+ 1

2
)Γ(1

2
α+ 1

2
ν− 1

2
µ+ 1

2
)

(2.15)

and the coefficients Am are defined in (2.9).

2In [12] the factor Γ(α) was omitted in the expression for F̂ (1).
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2.2. The case when ϑ is a non-negative integer

We now consider the case when ϑ = N , where N = 0, 1, 2, . . . . If ϑ = 2N ,
the infinite sequence of poles is sm = 2N − 2m. Then ζ(sm) appearing in the
coefficients Am in (2.9) vanishes for m ≥ N + 1 on account of the trivial zeros
of ζ(s) at s = −2,−4, . . . . In this case the expression in (2.14) is modified by
the infinite sum being replaced by the sum with index 0 ≤ m ≤ N ; see (2.17)
below.

When ϑ = 2N +1, we have sm = 2N +1−2m. There is then a double pole
when m = N , since the pole at sN coincides with the pole of ζ(s) at s = 1.
Letting s = 1 + ε, where ε→ 0, we find that the integrand in (2.3) (including
the multiplicative factor 2α(1

2
a)ϑ) is

(1
2
a)2N−εζ(1 + ε)Γ(α− ε)Γ(−N + 1

2
ε)

2Γ(N + 1 + µ− 1
2
ε)Γ(N + 1 + ν − 1

2
ε)Γ(N + 1 + µ+ ν − 1

2
ε)
,

where Γ(−N + 1
2
ε) ∼ 2ε−1(−)N/Γ(N + 1− 1

2
ε). Making use of the results

ζ(1 + ε) = ε−1{1 + εγ +O(ε2)}, Γ(z + ε) = Γ(z){1 + εψ(z) +O(ε2)},

where γ = 0.55721 . . . is the Euler-Mascheroni constant and ψ(z) is the psi-
function, we obtain the expansion of the above integrand about the point s = 1
given by

(−)N(1
2
a)2NΓ(α)

Γ(N + 1 + µ)Γ(N + 1 + ν)Γ(N + 1 + µ+ ν)N !

1

ε2

{
1 + eΥN(a) +O(ε2)

}
,

where

ΥN(a) = γ − log (1
2
a)− ψ(α) + 1

2
ψ(N + 1) + 1

2
ψ(N + 1 + µ)

+1
2
ψ(N + 1 + ν) + 1

2
ψ(N + 1 + µ+ ν). (2.16)

The residue at the double pole is therefore

(−)N(1
2
a)2NΓ(α) ΥN(a)

Γ(N + 1 + µ)Γ(N + 1 + ν)Γ(N + 1 + µ+ ν)N !
.

Hence we have the expansions:

Theorem 2. Let N be a non-negative integer and ϑ = α− µ− ν, with α > 0
Then we have the expansions for 0 < a ≤ π

Sµ,ν(a) = F̂ (1) +
N∑
m=0

Am(1
2
a)2m (2.17)
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when ϑ = 2N , and

Sµ,ν(a) =
∞∑
m=0
m6=N

Am(1
2
a)2m +

(−)N(1
2
a)2NΓ(α) ΥN(a)

Γ(N+1+µ)Γ(N+1+ν)Γ(N+1+µ+ν)N !
(2.18)

when ϑ = 2N + 1. The coefficients Am are defined in (2.9), and F̂ (1) and
ΥN(a) are given in (2.15) and (2.16).

3. The series Sµ,ν(a, b) when a 6= b We now consider the case a 6= b
where, without loss of generality, we suppose a > b. Following the same
procedure described in Section 2, we have the function f(x) and its Mellin
transform F (s) given by

f(x) =
Jµ(ax)Jν(bx)

xα
, F (s) =

∫ ∞
0

Jµ(at)Jν(bt)

tλ
dt (λ = α + 1− s).

The strip of analyticity of the Mellin transform is ϑ < <(s) < α+ 1, where we
recall that ϑ = α− µ− ν. From [11, p. 401]

F (s) =
(1
2
a)λbνΓ(1

2
µ+ 1

2
ν + 1

2
− 1

2
λ)

aν+1Γ(1 + ν)Γ(1
2
µ− 1

2
ν + 1

2
+ 1

2
λ)
× 2F1

( µ+ν+1−λ
2

, ν−µ+1−λ
2

1 + ν
;
b2

a2

)
(3.1)

for a > b > 0 and µ + ν + 1 > <(λ) > −1, where 2F1 denotes the Gauss
hypergeometric function. We remark that when a = b the hypergeometric
function can be summed by Gauss’ theorem (see (A.1)) to yield the result in
(2.4) subject to the more restrictive condition <(λ) > 0.

Then we have

Sµ,ν(a, b) =
Λ

2πi

∫ c+∞i

c−∞i
F̃ (s)ζ(s)(1

2
a)−s ds, (max{1, ϑ} < c < α+ 1) (3.2)

where F̃ (s) = (1
2
a)sF (s). The poles of the integrand on the left of the integra-

tion path are as before, namely at s = 1 and s = sm, where sm is defined in
(2.5). Provided ϑ 6= 1, 3, 5, . . . all these poles are simple.

With s = σ ± it, we have from (2.6), (3.1) and (A.4)

|F̃ (σ ± it)| = O((1
2
t)σ+ν−α−1)

∣∣∣∣2F1

( 1
2
(σ−ϑ)± 1

2
it, 1

2
(σ−ϑ)−µ± 1

2
it

1 + ν
;χ
)∣∣∣∣

= O((1
2
t)σ−α−

3
2 )

(1 +
√
χ)α+1−σ

(
√
χ)ν+

5
2

, χ :=
b2

a2
(t→∞). (3.3)

The order estimate in t is the same as that in (2.7) for the case a = b. Thus
the same arguments apply to justify the displacement of the integration path
to the left over the first M poles of the sequence {sm}.
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A difficulty presents itself with the remainder integral RM taken along the
rectilinear path σ = ϑ − 2M + 1. It has not been possible to extract the
factor3 (1 +

√
χ)2M from the 2F1 function for t ∈ (−∞,∞), which is seen

to be present in the above asymptotic estimate. This would indicate that
RM = O(((a+ b)/(2π))2M) and hence that RM → 0 as M →∞ provided that
1 < a+ b < 2π.

The residue at the pole s = sm is

Bm(1
2
a)2m

Γ(1 + ν)
, Bm =

(−)mζ(ϑ− 2m)

m!Γ(1 + µ+m)
2F1

( −m,−m− µ
1 + ν

;χ
)
. (3.4)

The domain of convergence of the infinite sum of these residues can be deter-
mined by examining the large-m behaviour of the coefficients Bm. From (2.11)
and the properties of the gamma function we find, provided ϑ is not an even
integer,

Bm = O(π−2mmν−α− 1
2 ) 2F1

( −m,−m− µ
1 + ν

;χ
)

as m → ∞. From (B.1), the above hypergeometric function possesses the

large-m behaviour O(m−ν−
1
2 (1 +

√
χ)2m) when 0 < χ < 1. Hence we find

Bm(1
2
a)2m = O

(
m−α−1

(
a+ b

2π

)2m)
(m→∞),

which shows (since α > 0) that the sum of the residues
∑
m≥0Bm(1

2
a)2m con-

verges when 0 < a+ b ≤ 2π and ϑ is not an even integer.

Displacement of the integration path in (3.2) to the left over the poles at
s = 1 and s = sm, m ≥ 0 then yields the following result:

Theorem 3. Let ϑ = α − µ − ν be non-integer, a > b > 0 and α > 0. Then
we have the convergent expansion

Sµ,ν(a, b) = F̂ (1) +
1

Γ(1 + ν)

∞∑
m=0

Bm(1
2
a)2m (3.5)

for 0 < a+ b ≤ 2π, where

F̂ (1) =
(1
2
a)ϑ−1Γ(1

2
µ+ 1

2
ν + 1

2
− 1

2
α)

2Γ(1 + ν)Γ(1
2
µ− 1

2
ν + 1

2
α + 1

2
)
2F1

( µ+ν+1−α
2

, ν−µ+1−α
2

1 + ν
;
b2

a2

)

and the coefficients Bm are given by (3.4).

3In the special case µ = ν, however, a quadratic transformation of the hypergeometric
function exists [6, (15.8.21)] where the extraction of the factor (1 +

√
χ)2M is possible.
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In [1], the value of the parameter ϑ was taken as ϑ = −2N , N = 0, 1, 2, . . . ,
so that sm = −2N − 2m. In this case all the terms in the sum in (3.5) vanish,
except when k = m = 0. Noting that ζ(0) = −1

2
, we obtain from (3.5)

Sµ,ν(a, b) =
(1
2
a)−2N−1Γ(N + 1

2
)

2Γ(1 + ν)Γ(µ−N + 1
2
)

2F1

(
N + 1

2
, N + 1

2
− µ

1 + ν
;
b2

a2

)

− δN0

2Γ(1 + µ)Γ(1 + ν)
, (ϑ = −2N, N = 0, 1, 2, . . . )

valid for a > b and 0 < a + b ≤ 2π, where δN0 is the Kronecker delta symbol.
This is equivalent to the result given in [1, Theorem 3.1], although there the
domain of validity was given as 0 < b < a < π. The result when α = µ + ν
(δ = 0) was also considered by Miller [4, Eq. (3.5b)] who gave the domain of
validity as 0 < a+ b < 2π.

3.1. The case when ϑ is a non-negative integer

The treatment of the case of non-negative integer values of ϑ follows a similar
procedure to that discussed in Section 2.2. When ϑ = 2N , N = 0, 1, 2, . . .,
then sm = 2N−2m and the sum in (3.5) terminates with the summation index
m satisfying 0 ≤ m ≤ N .

When ϑ = 2N + 1, then sm = 2N + 1 − 2m and there is a double pole
at s = 1, where the pole sN coincides with the pole of ζ(s). With s = 1 + ε,
where ε→ 0, the integrand in (3.2) (including the multiplicative factor Λ) is

(1
2
a)2N−εζ(1 + ε)Γ(−N + 1

2
ε)

2Γ(1 + ν)Γ(N + 1 + µ− 1
2
ε)

2F1

(−N + 1
2
ε,−N − µ+ 1

2
ε

1 + ν
;
b2

a2

)

=
(−)N(1

2
a)2N

Γ(1 + ν)Γ(N + 1 + µ)N !

1

ε2

{
1 + εΥ̂N(a) +O(ε2)

}

×2F1

(−N+ 1
2
ε,−N−µ+ 1

2
ε

1 + ν
;
b2

a2

)
,

where
Υ̂N(a) = γ − log 1

2
a+ 1

2
ψ(N + 1 + µ) + 1

2
ψ(N + 1). (3.6)

The expansion of the hypergeometric function as ε → 0 is discussed in
Appendix C. If we let χ := b2/a2 and define

Fm(µ, χ) := 2F1

( −m,−m− µ
1 + ν

;χ
)
, (m = 0, 1, 2, . . . ), (3.7)

then from (C.6) it is found that

2F1

(−N+ 1
2
ε,−N−µ+ 1

2
ε

1 + ν
;χ
)

= FN(µ, χ)− 1
2
ε∆N(χ) +O(ε2).
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The quantity ∆N(χ) is given by

∆N(χ) :=
N∑
r=1

(
N
r

)(
N + µ
r

)
Dr(N,µ)χr

(1 + ν)r

+
(µ)N+1χ

N+1

(1 + ν)N+1(N + 1)
3F2

(
1, 1, 1− µ

N + ν + 2, N + 2
;χ
)

(3.8)

where, from (C.3), the coefficients Dr(N,µ) are defined by

Dr(N,µ) := r!
r−1∑
k=0

(
1

N − k
+

1

N + µ− k

)

= r!{ψ(N+1) + Ψ(N+1+µ)− ψ(N+1−r)− ψ(N+1+µ−r)}. (3.9)

The residue at the double pole s = 1 is therefore given by

(−)N(1
2
a)2N

Γ(1 + ν)Γ(N + 1 + µ)N !

{
Υ̂N(a)FN(µ, χ)− 1

2
∆N(χ)

}
.

Then we have the following theorem.

Theorem 4. Let N = 0, 1, 2, . . . , χ = b2/a2 < 1 and 0 < a + b ≤ 2π. When
ϑ = α− µ− ν is a non-negative integer the following expansions hold:

Sµ,ν(a, b) = F̂ (1) +
1

Γ(1 + ν)

N∑
m=0

Bm(1
2
a)2m (3.10)

when ϑ = 2N , and

Sµ,ν(a, b) =
(−)N(1

2
a)2N

Γ(1 + ν)Γ(N + 1 + µ)N !

{
Υ̂N(a)FN(µ, χ)−1

2
∆N(χ)

}

+
1

Γ(1 + ν)

∞∑
m=0
m6=N

Bm(1
2
a)2m (3.11)

when ϑ = 2N + 1. The coefficients Bm and the quantities Υ̂N(a), FN(µ, χ)
and ∆N(χ) are defined in (3.4), (3.6), (3.7) and (3.8).

3.2. Two special cases

We present two cases of the expansion (3.11). When ϑ = 1 (N = 0), we find
upon noting that the finite sum appearing in ∆0(χ) is zero, F0(µ, χ) = 1 and
ψ(1) = −γ the expansion

Sµ,ν(a, b) =
1

Γ(1 + ν)Γ(1 + µ)

{
1
2
γ − log 1

2
a+ 1

2
ψ(1 + µ)
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− µχ

2(1 + ν)
3F2

(
1, 1, 1− µ
2 + ν, 2

;χ
)}

+
1

Γ(1 + ν)

∞∑
m=1

Bm(1
2
a)2m (ϑ = 0).

(3.12)
When ϑ = 3 (N = 1), we find with F1(µ, χ) = 1 + (1 + µ)χ/(1 + ν) that

Sµ,ν(a, b) = −
(1
2
a)2

Γ(1 + ν)Γ(2 + µ)

{
[1
2
(1+γ)− log 1

2
a+ 1

2
ψ(2+µ)]

(
1+

(1 + µ)χ

(1 + ν)

)

−1
2
∆1(χ)

}
+

1

Γ(1 + ν)

∞∑
m=0
m6=1

Bm(1
2
a)2m, (3.13)

where

∆1(χ) =
(2 + µ)χ

(1 + ν)
+

µ(1 + µ)χ

2(1 + ν)(2 + ν)
3F2

(
1, 1, 1− µ
3 + ν, 3

;χ
)
.

When a = b (χ = 1), use of the Gauss summation theorem (see (A.1))
shows that Am = Bm/Γ(1 + ν) (m 6= N). From the summations [9, p. 452]

3F2

(
1, 1, 1− µ
ν + `, `

; 1
)

=



(1+ ν)

µ
{ψ(1+µ+ν)− ψ(1+ν)} (` = 2)

2(2+ν)(2+µ+ν)

µ(1 + µ)
{ψ(3+µ+ν)− ψ(2+ν)}

−2(2+ν)

µ
(` = 3),

it can be shown after some routine algebra that the expansions (3.12) and
(3.13) reduce to the result stated in (2.14) valid for χ = 1.

4. Sums involving the modified Bessel functions In this section we
investigate two sums involving the modified Bessel functions Kν(x) an Iν(x).
Thus, we consider the sums

S(1)
µ,ν(a, b) =

∞∑
n=1

Kµ(an)Jν(bn)

nα
, S(2)

µ,ν(a, b) =
∞∑
n=1

Kµ(an)Iν(bn)

nα
, (4.1)

where again we suppose µ, ν ≥ 0. In the first sum we require a > 0, b > 0 for
convergence with α unrestricted. In the second sum we require either a > b > 0
with α unrestricted, or a = b > 0 with α > 0, since Kµ(an)Iν(bn) ∼ (2n

√
ab)−1

exp [−(a − b)n] as n → ∞. In both cases we shall continue to consider only
real values of α.
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We proceed in the same manner as in Sections 2 and 3. We have the Mellin
transform given by [6, (10.43.26)]

F (s) =
∫ ∞
0

Kµ(at)Jν(bt)

tλ
dt, λ = 1 + α− s

=
bν(1

2
a)λ

2a1+ν
Γ(1

2
− 1

2
λ+ 1

2
ν− 1

2
µ)Γ(1

2
− 1

2
λ+ 1

2
ν+ 1

2
µ)

Γ(1 + ν)
×2F1

( 1−λ+ν−µ
2

, 1−λ+ν+µ
2

1 + ν
;− b

2

a2

)
(4.2)

provided ν −<(λ)± µ > −1 and a > 0, b > 0. Then we obtain

S(1)
µ,ν(a, b) =

1

2πi

∫ c+∞i

c−∞i
F̃ (s)ζ(s)(1

2
a)−sds (c > max{1, α− ν ± µ}), (4.3)

where F̃ (s) = (1
2
a)sF (s). The poles of the integrand are situated on the left-

hand side of the integration path at s = 1 and at

s±m = α− ν ± µ− 2m, m = 0, 1, 2 . . . . (4.4)

Displacement of the integration path to the left over the poles (we omit
the details justifying this process) then yields the following result.

Theorem 5. Let a > 0, b > 0 and µ, ν ≥ 0, with α real but unrestricted and
χ = b2/a2. Then, provided the poles are all simple, the following expansion
holds for χ > 0

S(1)
µ,ν(a, b) = F (1) +

bν

21+ν

∞∑
m=0

(−)mΓ(µ−m)ζ(s+m)

m!Γ(1 + ν)
Fm(µ,−χ)

(
a

2

)2m−µ

+
bν

21+ν

∞∑
m=0

(−)mΓ(−µ−m)

m!Γ(1 + ν)
ζ(s−m)Fm(−µ,−χ)

(
a

2

)2m+µ

(4.5)

where

F (1) =
bν(1

2
a)α

2a1+ν
Γ(1

2
− 1

2
α+ 1

2
ν− 1

2
µ)Γ(1

2
− 1

2
α+ 1

2
ν+ 1

2
µ)

Γ(1 + ν)

×2F1

( 1−α+ν−µ
2

, 1−α+ν+µ
2

1 + ν
;−χ

)
.

The functions Fm(±µ,−χ) are defined in (3.7) and the poles s±m are specified
in (4.4).

To determine the domain of convergence of the expansions in (4.5) we ex-
amine the large-m behaviour of the terms. Upon use of the functional relation
for ζ(s) in (2.11), this behaviour is essentially controlled by

Tm = (−)m
Γ(±µ−m)

m!
(2π)−2mΓ(1− s±m) sin(1

2
πs±m)(1

2
a)2mFm(±µ,−χ)
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= O(m−α+ν−
1
2 )
(
a

2π

)2m

Fm(±µ,−χ) (m→∞), (4.6)

when α−ν±µ is not an even integer. From the asymptotic behaviour derived
in (B.2), we have Fm(±µ,−χ) = O(m−ν−

1
2 (1 + χ)m) as m→∞, so that

Tm = O(m−α−1)
(a2 + b2)m

(2π)2m
(m→∞).

Consequently, the expansion in (4.5) holds in the domain4

0 <
√
a2 + b2 ≤ 2π (α > 0). (4.7)

The treatment of S(2)
µ,ν(a, b) is similar, since the Mellin transform

F (s) =
∫ ∞
0

Kµ(at)Iν(bt)

tλ
dt (a > b > 0)

is given by (4.2) with the argument of the 2F1 function replaced by +b2/a2.
Consequently, we obtain the following expansion.

Theorem 6. Let a ≥ b > 0 and µ, ν ≥ 0, with α real but unrestricted (if
a > b) or α > 0 (if a = b) and χ = b2/a2. Then, provided the poles are all
simple, the following expansion holds for 0 < χ < 1

S(2)
µ,ν(a, b) = F (1) +

bν

21+ν

∞∑
m=0

(−)mΓ(µ−m)ζ(s+m)

m!Γ(1 + ν)
Fm(µ, χ)

(
a

2

)2m−µ

+
bν

21+ν

∞∑
m=0

(−)mΓ(−µ−m)

m!Γ(1 + ν)
ζ(s−m)Fm(−µ, χ)

(
a

2

)2m+µ

(4.8)

where

F (1) =
bν(1

2
a)α

2a1+ν
Γ(1

2
− 1

2
α+ 1

2
ν− 1

2
µ)Γ(1

2
− 1

2
α+ 1

2
ν+ 1

2
µ)

Γ(1 + ν)

×2F1

( 1−α+ν−µ
2

, 1−α+ν+µ
2

1 + ν
;χ
)
.

The functions Fm(±µ, χ) are defined in (3.7) and the poles s±m are specified in
(4.4).

Following the estimate Tm in (4.6), the large-m behaviour of the terms in the
expansion in (4.8) is controlled by

Tm = O(m−α+ν−
1
2 )
(
a

2π

)2m

Fm(±µ, χ).

4If α ≤ 0 the domain of convergence is 0 <
√
a2 + b2 < 2π.
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From the asymptotic behaviour in (B.1) we have Fm(±µ, χ) = O(m−ν−
1
2 (1 +√

χ)2m) as m→∞ when 0 < χ < 1, so that

Tm = O(m−α−1)
(
a+ b

2π

)2m

(m→∞).

Consequently the expansions in (4.8) hold in the domain

0 < a+ b ≤ 2π (α > 0) (4.9)

with a similar reduced domain (0, 2π) when α ≤ 0; compare (4.7).

5. An example of S(1)
µ,ν(a, b) when multiple poles are present The

expansions presented in (4.5) and (4.8) assume all the poles to be simple.
Double poles will arise when either (i) one of the poles in the sequences {s±m}
coincides with the pole at s = 1 or (ii) when µ = N , N = 0, 1, 2, . . . . In this
last case the poles {s+m} are simple for 0 ≤ m ≤ N − 1, with double poles for
m ≥ N . If µ = N and a double pole from the sequences {s±m} with m ≥ N
coincides with s = 1, then there will be a treble pole.

We do not deal with all the cases that can arise here, although the procedure
is the routine, albeit laborious, evaluation of residues of the integrand of the
appropriate integral. As an illustrative example, we consider the sum S(1)

µ,ν(a, b)
in the case µ = 2 and α − ν = 3. This corresponds to the poles s+m = 5− 2m
and s−m = 1 − 2m; the poles at s = 3, 5 are simple, that at s = 1 is a treble
pole with those at s = −1,−3, . . . being double poles.

The residue of the integrand in (4.3) at the double poles s = −2m + 1,
m = 1, 2, . . . are evaluated in a similar manner to that described in Section
2.2. With s = −2m+ 1 + ε, where ε→ 0, these are given by the coefficient of
ε−1 in the expansion of

(1
2
a)2(1

2
b)ν

Γ(1 + ν)

(
a

4π

)2m−ε (−)mζ(2m− ε)Γ(2m− ε)
ε2Γ(m+1− 1

2
ε)Γ(m+3− 1

2
ε)

×2F1

( −m+ 1
2
ε,−m−2+ 1

2
ε

1 + ν
;−χ

)
.

From (C.6), the expansion of the hypergeometric function has the form

2F1

( −m+ 1
2
ε,−m−2+ 1

2
ε

1 + ν
;−χ

)
= Fm(2,−χ)− 1

2
ε∆m(−χ) +O(ε2),

where Fm(2,−χ) is given in (3.7) and, from (3.8) when µ = 2,

∆m(−χ) =
m∑
r=1

(−)r
(
m
r

)(
m+ 2
r

)
Dr(m, 2)

(1 + ν)r
χr



Bessel function sums 179

+
(−χ)m+1(m+ 2)!

(1 + ν)m+1(m+ 1)

{
1 +

χ

(m+ 2)(m+ ν + 2)

}
with the coefficients Dr(m, 2) defined by (??). This produces the residues of
the double poles given by

2(1
2
a)2(1

2
b)ν

Γ(1 + ν)

(−)mζ(2m)Γ(2m)

m!(m+ 2)!

(
a

4π

)2m{
hm(a)Fm(2,−χ)− 1

2
∆m(−χ)

}
, (5.1)

where

hm(a) := 1
2
ψ(m+ 1) + 1

2
ψ(m+ 3)− ψ(2m)− ζ ′(2m)

ζ(2m)
− log

(
a

4π

)
.

The residue at the treble pole at s = 1 is obtained as the coefficient of ε−2

in the expansion of

(1
2
a)2(1

2
b)ν

Γ(1 + ν)

(a/2)εζ(1 + ε)Γ2(1 + 1
2
ε)

ε2(1− 1
2
ε)(2− 1

2
ε)

2F1

( 1
2
ε,−2 + 1

2
ε

1 + ν
;−χ

)
.

Upon use of the result ζ(1 + ε) = ε−1{1 + εγ − ε2γ1 + O(ε3)}, where γ1 =
−0.0728158 . . . is the first Stieltjes coefficient, and

2F1

( 1
2
ε,−2 + 1

2
ε

1 + ν
;−χ

)
= 1+

1

2
ε(2−1

2
ε)

χ

1 + ν
+

1

2
ε(2−1

2
ε)

χ2

(1 + ν)22!

− 4ε2χ3

(1 + ν)33!

{
1− 3 · 1χ

(4 + ν)4
+

(3)2(1)2χ
2

(4 + ν)2(4)2
−· · ·

}
+O(ε3)

= 1 +
εχ

1 + ν

(
1 +

χ

2(2 + ν)

)
− 1

4
ε2G(χ) +O(ε3),

where

G(χ) =
χ

1 + ν

(
1 +

χ

2(2 + ν)

)
+

2χ3

3(1 + ν)3
3F2

(
1, 1, 3

4 + ν, 4
;−χ

)
,

the residue at s = 1 is found to be

R1 =
(1
2
a)2(1

2
b)ν

4Γ(1 + ν)

{
7

8
−γ2−2γ1−

3

2
log 1

2
a+ log2 1

2
a+

π2

12

+
2χ

1 + ν

(
1 +

χ

2(2 + ν)

)(
3

4
− log 1

2
a
)
− 1

2
G(χ)

}
. (5.2)

Evaluating the terms corresponding to m = 0, 1 in the first sum in (3.3),
we finally obtain from (5.1) and (5.2) the expansion

S(1)
µ,ν(a, b) =

(1
2
a)−2(1

2
b)ν

2Γ(1 + ν)

{
ζ(5)− a2ζ(3)

4

(
1 +

χ

1 + ν

)}
+R1
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+
2(1

2
a)2(1

2
b)ν

Γ(1 + ν)

∞∑
m=1

(−)mζ(2m)Γ(2m)

m!(m+ 2)!

(
a

4π

)2m{
hm(a)Fm(2,−χ)− 1

2
∆m(−χ)

}
(5.3)

valid when µ = 2, α− ν = 3 and subject to the condition (4.7).

6. Concluding remarks All the expansions presented have been verified
numerically with the aid of Mathematica. In particular, the large-m behaviour
of the terms in the various expansions was examined to verify the domains of
convergence given in Theorem 3, (4.7) and (4.9). In the computation of the
expansion in (5.3) the term ζ ′(2m)/ζ(2m) was computed using the command
Zeta ′[s]/Zeta[s]; alternatively, the result [6, (25.2.6)]

ζ ′(2m)

ζ(2m)
=
−1

ζ(2m)

∞∑
k=2

log k

k2m
(m = 1, 2, . . .)

may be employed.
The expansions of the alternating versions of the sums considered in this

paper can be deduced from the results of Sections 2–4. For the first sum we
have

Ŝµ,ν(a, b) = Λ
∞∑
n=1

(−)n−1
Jµ(an)Jν(bn)

nα
= Sµ,ν(a, b)− 21−ϑSµ,ν(2a, 2b),

where we recall that Λ = 2µ+ν/(aµbν) and ϑ = α− µ− ν. For the alternating
sums involving modified Bessel functions

Ŝ(1)
µ,ν(a, b) =

∞∑
n=1

(−)n−1
Kµ(an)Jν(bn)

nα
, Ŝ(2)

µ,ν(a, b) =
∞∑
n=1

(−)n−1
Kµ(an)Iν(bn)

nα
,

we have similarly

Ŝ(k)
µ,ν(a, b) = S(k)

µ,ν(a, b)− 21−αS(k)
µ,ν(2a, 2b) (k = 1, 2).

It can be verified that the contribution from the pole of ζ(s) at s = 1 is
absent in the expansion of these alternating sums. This is also evident from
the integral representations for the alternating sums which take the form

1

2πi

∫ c+∞i

c−∞i
F (s)(1− 21−s)ζ(s)(1

2
a)−sds,

where F (s) is the appropriate Mellin transform. The factor (1 − 21−s)ζ(s)
appearing in the above integrand is regular at s = 1.

Appendix A: The asymptotic behaviour of a Gauss hypergeomet-
ric function Consider the Gauss hypergeometric function

F(χ) = 2F1

(
A+ iλ, B + iλ

C
;χ
)

(λ→ +∞),
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where 0 < χ ≤ 1. The finite parameters (see Section 3) are A = 1
2
(σ − ϑ),

B = A − µ, C = 1 + ν and5 λ = 1
2
t, with σ < α + 1. It is easily verified

that C − A − B > 0 and C − B > 0. When χ = 1, we have from the Gauss
summation theorem

2F1

(
a, b
c

; 1
)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(<(c− a− b) > 0) (A.1)

and (2.6) the result

F(1) =
Γ(C)Γ(C−A−B−2iλ)

Γ(C−A−iλ)Γ(C−B−iλ)

∼ Γ(C)

2
√
π

2C−A−Bλ−C+ 1
2 exp

[
−2iλ log 2 +

πiC

2
− πi

4

]
(λ→ +∞). (A.2)

When 0 < χ < 1, we first employ Euler’s transformation [6, (15.8.1)] to
yield

F(χ) = (1− χ)C−A−B−2iλ2F1

(
C−A−iλ, C−B− iλ

C
;χ
)
. (A.3)

Then, since C −B > 0 we have the integral representation [6, (15.6.2)]

2F1

(
C−A−iλ, C−B−iλ

C
;χ
)

=
Γ(C)Γ(1−B−iλ)

2πiΓ(C−B−iλ)

∫ (1+)

0
h(τ)e−iλψ(τ)dτ,

where

h(τ) =
τB−1(1− τ)C−B−1

(1− χτ)A
, ψ(τ) = log

(
τ

(1− τ)(1− χτ)

)
.

The integration path is a loop that starts at τ = 0, encircles the point τ = 1 in
the positive sense (excluding the point τ = 1/χ) and terminates at τ = 0. The
τ -plane is cut along (−∞, 1] and from the point 1/χ to infinity in a suitable
direction.

Stationary points of the phase function ψ(τ) occur when ψ′(τ) = 0; that is,
at the points τ = ±1/

√
χ. The integration path can be deformed to pass over

the point τs = 1/
√
χ in a direction that is locally perpendicular to the real

τ -axis. Applying the stationary phase method, where we note that ψ′′(τs) =
2χ3/2/(1−√χ)2 > 0 and make the substitution τ − τs = iu, we have [5, p. 97]

1

2πi

∫ (1+)

0
h(τ)e−iλψ(τ)dτ ∼ h(τs)

2π
e−iλψ(τs)

∫ ∞
−∞

eiλu
2ψ(τs)du

5The parameter λ in Appendix A is not to be confused with that appearing in Sections
2–4.
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=
h(τs)

2π
e−iλψ(τs)+πi/4

(
2π

λψ′′(τs)

)1/2
as λ→ +∞.

Since

ψ(τs) = −2 log(1−√χ), h(τs) =
χ−C/2

(1−√χ)C−A−B+1
,

we obtain from (A.3) after some straightforward algebra the estimate

F(x) ∼ Γ(C)Γ(1−B−iλ)

2πΓ(C−B−iλ)
eπi/4

√
π

λ

(1 +
√
χ)C−A−B−2iλ

χ
1
2
C+ 3

4

∼ Γ(C)

2
√
π
λ−C+ 1

2
(1 +

√
χ)C−A−B

(
√
χ)C+ 3

2

exp
[
−2iλ log(1 +

√
χ) +

πiC

2
− πi

4

]
(A.4)

for 0 < χ < 1 and λ→ +∞.
We remark that if we let χ = 1 in (A.4) then the large-λ estimate for

F(χ)χ→1 agrees with that in (A.2).

Appendix B: The asymptotic behaviour of Fm(±µ, χ) as m → ∞
We consider the asymptotic behaviour for integer m → ∞ of the hypergeo-
metric functions Fm(±µ, χ) when (i) 0 < χ < 1 and (ii) χ < 0. Application of
the transformation [6, (15.6.2)] shows that

Fm(±µ, χ) ≡ 2F1

(−m,−m∓ µ
1 + ν

;χ
)

= (1−χ)m±µ2F1

(
1+ν+m,−m∓µ

1 + ν
;

χ

χ− 1

)
.

Then, from the expansion given in [6, (15.12.5)] in terms of the modified Bessel
function we obtain, as m→∞,

2F1

(
1+ν+m,−m∓µ

1 + ν
;

χ

χ− 1

)
∼ Γ(1 + ν)

2χ(1+ν)/2
(1−χ)(2+ν±µ)/2

√
ζ sinh ζ ρ−νIν(ρζ)

∼ Γ(1 + ν)

2
√
π

m−ν−
1
2

(1− χ)(1+ν∓µ)/2

χ
1
2
ν+ 1

4

(
1 +
√
χ

1−√χ

)ρ
where

ρ = m+ 1
2
(1 + ν ± µ), ζ = log

(
1 +
√
χ

1−√χ

)
, sinh ζ =

2
√
χ

1− χ
.

Hence it follows that

Fm(±µ, χ) ∼ Γ(1 + ν)

2
√
πmν+ 1

2

(1 +
√
χ)2m+1+ν±µ

χ
1
2
ν+ 1

4

(0 < χ < 1) (B.1)
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as m→∞.
For the hypergeometric function with negative argument we have [6, (18.5.8)](

m+ ν
m

)
2F1

( −m,−m∓ µ
1 + ν

;−χ
)

= (1 + χ)mP (ν,±µ)
m

(
1− χ
1 + χ

)
,

where P (α,β)
m (x) is the Jacobi polynomial. We observe that for −χ ∈ (0,−∞)

the argument (1− χ)/(1 + χ) ∈ (−1, 1). From [6, (18.15.6)], we then have the
large-m behaviour in terms of the Bessel function

P (ν,±µ)
m

(
1− χ
1 + χ

)
∼ mν

2
1
2ρν

θ
1
2Jν(ρθ)

(sin 1
2
θ)ν+

1
2 (cos 1

2
θ)±µ+

1
2

, cos θ =
1− χ
1 + χ

∼ 1√
πm

(1 + χ)(1+ν±µ)/2

χ
1
2
ν+ 1

4

cos [2ρφ− 1
2
πν − 1

4
π], φ = arctan

√
χ.

Hence we obtain the estimate

Fm(±µ,−χ) ∼ Γ(1 + ν)
√
πmν+ 1

2

(1 + χ)m+ 1
2
(1+ν±µ)

χ
1
2
ν+ 1

4

cos [2ρφ− 1
2
πν − 1

4
π] (χ > 0)

(B.2)
as m→∞.

Appendix C: The small-ε expansion of 2F1(−N+ε,−N−µ+ε; 1+ν;χ)
Let N = 0, 1, 2, . . ., µ, ν ≥ 0, 0 < χ < 1 and ε be a parameter such that ε→ 0.
Then, using the fact that (−N + ε)N+r = ε(−N + ε)N(1 + ε)r−1 for r ≥ 1, we
have

2F1

(−N + ε,−N − µ+ ε
1 + ν

;χ
)

= 1 +
N∑
r=0

(−N + ε)r(−N − µ+ ε)r
(1 + ν)rr!

χr

+ε(−N + ε)N
∞∑
r=1

(−N − µ+ ε)N+r(1 + ε)r−1
(1 + ν)N+r(N + r)!

χN+r. (C.1)

We first consider the finite sum and write

S1 = 1 +
N∑
r=0

(−N + ε)r(−N − µ+ ε)r
(1 + ν)rr!

χr.

From the expansion

(β+ε)r = (β)r

{
1+ε(ψ(β+r)−ψ(β))+O(ε2)

}
= (β)r

{
1+ε

r−1∑
k=0

1

β + k
+O(ε2)

}
,

with β put equal to −N and −N − µ in turn, we obtain

S1 = 1 +
N∑
r=1

(−N)r(−N − µ)rχ
r

(1 + ν)rr!

{
1− εDr(N,µ)

r!
+O(ε2)

}
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= FN(µ, χ)− ε
N∑
r=1

(
N
r

)(
N + µ
r

)
Dr(N,µ)

(1 + ν)r
χr +O(ε2), (C.2)

where FN(µ, χ) is defined in (3.7) and

Dr(N,µ) := r!
r−1∑
k=0

(
1

N − k
+

1

N + µ− k

)

= r!{ψ(N+1) + ψ(N+1+µ)− ψ(N+1−r)− ψ(N+1+µ−r)}. (C.3)

If we denote the infinite sum in (C.1) by S2 then use of the identity
(β)N+r+1 = (β)N+1(β +N + 1)r shows that

S2 = ε (−N + ε)N
∞∑
r=1

(−N − µ+ ε)N+r(1 + ε)r−1
(1 + ν)N+r(N + r)!

χN+r

= ε (−N)N
∞∑
r=1

(−N − µ)N+r(r − 1)!

(1 + ν)N+r(N + r)!
χN+r +O(ε2)

=
ε (−N)N(−N − µ)N+1

(1 + ν)N+1(N + 1)!
χN+1

∞∑
r=0

(1− µ)rr!

(c+N + 1)r(N + 2)r
χr +O(ε2)

= − ε (µ)N+1χ
N+1

(1 + ν)N+1(N + 1)
3F2

(
1, 1, 1− µ

N + ν + 2, N + 2
;χ
)

+O(ε2), (C.4)

where the sum has been expressed as a 3F2 hypergeometric function.
From (C.2) and (C.4) we finally obtain the desired expansion

2F1

(−N+ε,−N−µ+ε
1 + ν

;χ
)

= FN(µ, χ)− ε∆N(χ) +O(ε2), (C.5)

where

∆N(χ) =
N∑
r=1

(
N
r

)(
N + µ
r

)
Dr(N,µ)

(1 + ν)r
χr

+
(µ)N+1χ

N+1

(1 + ν)N+1(N + 1)
3F2

(
1, 1, 1− µ

N + ν + 2, N + 2
;χ
)
.

(C.6)
We remark that when µ = 0 the second expression in ∆N(χ) vanishes and that
when µ = 1, 2, . . . the 3F2(χ) function terminates.
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