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Abstract 
The main concern of present study is to investigate the effects of thermal radiation and chemical reaction on a 

steady two-dimensional laminar flow of a viscous incompressible electrically conducting micropolar fluid past a vertical 

isothermal stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and heat 

generation. The governing equations of momentum, angular momentum, energy, and species equations are solved 

numerically using Runge-Kutta fourth order method with the shooting technique. The effects of various parameters on 

the velocity, microrotation, temperature and concentration field as well as skin friction coefficient, Nusselt number and 

Sherwood number are shown graphically and tabulated. It is observed that the micropolar fluid helps in the reduction of 

drag forces and also acts as a cooling agent. An excellent agreement is observed between some of the obtained results of 

the current study and those of previously published studies. 
 

Introduction 
The free convection processes involving the combined mechanism of heat and mass transfer are encountered in 

many natural processes, in many industrial applications and in many chemical processing systems. The study of free 

convective mass transfer flow has become the object of extensive research as the effects of heat transfer along with mass 

transfer effects are dominant features in many engineering applications such as rocket nozzles, cooling of nuclear 
reactors, high sinks in turbine blades, high speed aircrafts and their atmospheric re-entry, chemical devices and process 

equipments. Ostrach [1], the initiator of the study of convection flow, made a technical note on the similarity solution of 

transient free convection flow past a semi infinite vertical plate by an integral method.  Sakiadis [2] analyzed the 

boundary layer flow over a solid surface moving with a constant velocity. This boundary layer flow situation is quite 

different from the classical Blasius problem of boundary flow over a semi-infinite flat plate due to en- trainment of 

ambient fluid. Erickson et al. [3] extended the work of Sakiadis for suction or injection of a smooth surface. 

The flow over a stretching surface is an important problem in many engineering processes with applications in 

industries such as extrusion, melt-spinning, the hot rolling, wire drawing, glass fiber production, manufacture of plastic 

and rubber sheets, cooling of a large metallic plate in a bath, which may be an electrolyte, etc. In industry, polymer sheets 

and filaments are manufactured by continuous extrusion of the polymer from a die to a windup roller, which is located at 

a finite distance away. 

In many environmental and industrial flows the classical theory of Newtonian fluids is unable to explain the 
microfluid mechanical characteristics observed. Micropolar fluids are fluids with microstructure belonging to a class of 

complex fluids with nonsymmetrical stress tensor referred to as micromorphic fluids. Physically they represent many 

industrially important liquids consisting of randomly oriented particles suspended in a viscous medium. The classical 

theories of continuum mechanics are inadequate to explicate the microscopic manifestations of such complex 

hydrodynamic behaviour. Eringen [4] presented the earliest formulation of a general theory of fluid microcontinua taking 

into account the inertial characteristics of the substructure particles, which are allowed to sustain rotation and couple 

stresses. Later Eringen [5] generalized the theory to incorporate thermal effects in the so-called thermo micropolar fluid. 

The theory of micropolar fluids and its extension, the thermo micropolar fluid constitute suitable non-Newtonian 

hydrodynamic and thermo-hydrodynamic models which can simulate the flow dynamics of colloidal fluids, liquid 

crystals, polymeric suspensions, haemotological fluids etc. Many numerical studies of micropolar heat and mass transfer 

have been communicated in the literature. Hassanien and Gorla [6] investigated the heat transfer to a micropolar fluid 
from a non-isothermal stretching sheet with suction and blowing. Flow over a porous stretching sheet with strong suction 

or injection was examined by Kelson and Farell [7]. 

Transport of momentum and thermal energy in fluid saturated porous media with low porosities, such as rocks, soil, 

sand, etc., is commonly described by using Darcy’s model for conservation of momentum and by using an energy 

equation based on the velocity field found from this model  

[8 ]. In contrast to rocks, soil, sand and other media that do fall in this category, certain porous materials, such as foam 

metals and fibrous media, usually have high porosity. Raptis [9] studied the boundary layer flow of a micropolar fluid 

through a non-Darcian porous medium. 

Magnetoconvection plays an important role in agriculture, petroleum industries, geophysics and in astrophysics. 

Important applications are found in the study of geological formations, in exploration and thermal recovery of oil and in 

the assessment of aquifers, geothermal reservoirs and underground nuclear waste storage sites. MHD flow has 

applications in metrology, solar physics and in motion of the earth’s core. Also, it has applications in the field of stellar 
and planetary magnetospheres, aeronautics, chemical engineering and electronics. The effects of a transversely applied 
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magnetic field on the flow of an electrically conducting fluid past an impulsively started infinite isothermal vertical plate 

were studied by Soundalgekar et al. [10]. MHD effects on impulsively started vertical infinite plate with variable 

temperature in the presence of a transverse magnetic field were studied by Soundalgekar et al. [11]. The dimensionless 

governing equations were solved using the Laplace transform technique. 

Radiative heat and mass transfer play an important role in manufacturing industries for the design of fins, steel 

rolling, nuclear power plants, and gas turbines. Various propulsion devices for aircraft, missiles, satellites and space 

vehicles are examples of such engineering applications. If the temperature of the surrounding fluid is rather high, 

radiation effects play an important role and this situation exists in space technology. In such cases, one has to take into 

account the effect of thermal radiation and mass diffusion. England and Emery [12] studied thermal radiation effects of 
an optically thin gray gas bounded by a stationary vertical plate. Radiation effects on mixed convection along an 

isothermal vertical plate were studied by Hossain and Takhar [13]. Raptis and Perdikis [14] studied the effects of thermal 

radiation and free convection flow past a moving vertical plate, the governing equations were solved analytically. Das et 

al. [15] analyzed radiation effects on flow past an impulsively started infinite isothermal vertical plate. Hayat and Qusim 

[16 ] proposed the effects of thermal radiation on MHD flow of a micropolar fluid with mass transfer. The radiation 

effect on steady free convection flow near isothermal stretching sheet in the presence of a magnetic field is studied by 

Ahmed [17]. 

The study of heat and mass transfer with chemical reaction is of great practical importance in many branches of 

science and engineering. Das et al. [18]studied the effects of mass transfer flow past an impulsively started infinite 

vertical plate with constant heat flux and chemical reaction. Anjalidevi and Kandasamy [19] studied effects of chemical 

reaction, heat and mass transfer on laminar flow along a semi-infinite horizontal plate. Pal and Chatterjee [20] studied 

heat and mass transfer in MHD non-Darcian flow of a micropolar fluid over a stretching sheet embedded in a porous 
media with nonuniform heat source and thermal radiation. Chamkha et al. [ 21] studied the coupled heat and mass 

transfer by MHD natural convection of micropolar fluid about a truncated cone in the presence of radiation and chemical 

reaction. Intensive studies have been carried out to investigate effects of chemical reaction on different flow types [22 -25 

]. 

Vajravelu and Rollins [26] studied the heat transfer characteristics in an electrically conducting fluid over a 

stretching sheet with variable wall temperature and internal heat generation or absorption. Mostafa and Shimaa [27] 

studied the MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation and slip 

velocity. Jat et al. [28] studied the MHD flow and heat transfer near the stagnation point of a micropolar fluid over a 

stretching surface with heat generation/absorption. Abo-Eldahb and El Aziz [29] found the heat transfer in a micropolar 

fluid past a stretching surface embedded in a non-Darcian porous medium with heat generation. Mohammed Ibrahim [ 

30] proposed the radiation and mass transfer effects on MHD free convection flow of a micropolar fluid past a stretching 
surface placed in a non-Darcian porous medium in presence of heat generation.  

In all the above papers viscous dissipation is neglected. But when the motion is under strong gravitational field, or 

flow field is of extreme size, the viscous dissipative heat cannot be neglected. Rahman [31] analyzed the steady laminar 

free-forced convective flow and heat transfer of micropolar fluids past a vertical radiate isothermal permeable surface in 

the presence of viscous dissipation and Ohmic heating. Abel et al. [32] studied the MHD flow, and heat transfer with 

effects of buoyancy, viscous and Joules dissipation over a nonlinear vertical stretching porous sheet with partial slip. 

Hsiao and Lee [33] analyzed the conjugate heat and mass transfer for MHD mixed convection with viscous dissipation 

and radiation effect for viscoelastic fluid past a stretching sheet. Gebhart [34] has shown that the viscous dissipation 

effect plays an important role in natural convection in various devices processes on large scales (or large planets). Also, 

he pointed out that when the temperature is small, or when the gravitational field is of high intensity, viscous dissipations 

is more  predominant in vigorous natural convection processes. Govardhan et al. [35] studied the radiation effect on 
MHD steady free convection flow of a gas at a stretching surface with a uniform free stream with viscous dissipation. 

Salem [36 ] investigated the effects of viscous dissipation and chemical reaction on MHD micropolar fluid along a 

permeable stretching sheet in non-Darcian porous medium with variable viscosity. Mahmoud [37] found that the effects 

of viscous dissipation and heat generation on MHD flow of a micropolar fluid over a moving permeable surface 

embedded in a non-Darcian porous medium. 

However the interaction of chemical reaction with thermal radiation of an electrically conducting micropolar fluid 

past a stretching surface has received little attention. Hence an attempt is made to investigate the thermal radiation effects 

on a steady free convection flow near an isothermal vertical stretching sheet in the presence of a magnetic field, a non-

Darcian porous medium, viscous dissipation and heat generation. The governing equations are transformed by using 

similarity transformation and the resultant dimensionless equations are solved numerically using the Runge-Kutta fourth 

order method with the shooting technique. The effects of various governing parameters on the velocity, temperature, 

concentration, skin-friction coefficient, the Nusselt number, and Sherwood number are shown in the figures and tables 
and analyzed in detail. 

 

Mathematical Formulation 
Let us consider a steady, two-dimensional laminar, free convection boundary layer flow of an electrically 

conducting dissipative and heat generating micropolar fluid through a porous medium bounded by a vertical isothermal 

stretching sheet coinciding with the plane y = 0, where the flow confined to y > 0. Two equal and opposite forces are 

introduced along the x - axis so that the sheet is linearly stretched keeping the origin fixed ( See Figure A). A uniformly 

distributed transverse magnetic field of strength 0B is imposed along the y - axis. The magnetic Reynolds number of the 

flow is taken to be small enough so that the induced distortion of the applied magnetic field can be neglected. It is also 

assumed that microscopic inertia term involving J ( where J is the square of the characteristic length of microstructure) 

can be neglected for steady two-dimensional boundary layer flow in a micropolar fluid without introducing any 



G.J. E.D.T.,Vol.3(4):28-40                                               (July-August, 2014)                                  ISSN: 2319 – 7293 

30 

appreciable error in the solution. Under the above assumptions and upon treating the fluid saturated porous medium as 

continuum, including the non-Darcian inertia effects, and assuming that the Boussinesq approximation is valid, the 

boundary layer form of the governing equations can be written as ( Willson [38], Nield and Bejan [39]). 

 

Figure A. Sketch of the physical model 
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Species equation 
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Subject to the boundary conditions 

,u bx      0,v      ,wT T      ,wC C     0   at y = 0, 

u u
  ,   T T

  ,  C C
  ,  0      as y                       (6) 

where x and y are the coordinates along and normal to the sheet. u and v are the components of the velocity in the  

x and y -  directions, respectively. 1,k  and 1G  are the microrotation component, coupling constant, and 

microrotation constant, respectively. 1, ,ek C K  are the effective thermal conductivity, permeability of the porous 

medium, transport property related to the inertia effect. T   is fluid temperature, C is fluid concentration. wT   is the 

surface temperature, wC  is the surface concentration, T
  be the ambient temperature of fluid, C

  is the ambient 

concentration of fluid, 
*, ,u  

 and g are the coefficient of thermal expansion, coefficient of concentration expansion, 

free steam velocity, and acceleration due to gravity, respectively. 0  be the electrical conductivity,  be the fluid 

density,  be the kinematic viscosity,  be the dynamic viscosity, pc be the specific heat at constant pressure of the 
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fluid, 0Q be the volumetric rate of heat generation, b be the constant, D be the diffusion coefficient, and Kr is the 

chemical reaction parameter. 

By using the Rosseland approximation ( Brewster [40] ), the radiative heat flux in y  direction is given by  
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where 
* is the Stefan-Boltzmann constant and 

*k is the mean absorption coefficient. By using equation (7), the energy 
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It is convenient to make the governing equations and conditions dimensionless by using 
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where R is the Reynolds number. 

 In view of the equation (8), the equations (1), (2), (3), (8) and (5) reduce to the following non-dimensional form. 
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The corresponding boundary conditions are 

u = x,  v = 0,  0  ,    1  ,   1      at  y = 0, 

u = 1,     0  ,     0  ,     0       as   y                                            (15) 

Proceeding with the analysis, we define a stream function ( , )x y  such that 
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Now, let us consider the steam function as if  
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and the boundary conditions (15) become 
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In equations (19), (20), (21), (22) and equating coefficient of 
0x  and 

1x , we obtain the coupled non-linear ordinary 

differential equations 
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where a prime denotes differentiation with respect to y. 

In view of equations (17), (18) , the boundary condition (23) reduce to  
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The physical quantities which are of importance for this problem are the skin-friction coefficient, Nusselt number 

and Sherwood number, which are defined by 

The shear stress at the stretching surface is given by 
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The wall mass flux is given by 
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               (33) 

Solution of the Problem 
The shooting method for linear equations is based on replacing the boundary value problem by two initial value 

problems and the solutions of the boundary value problem is a linear combination between the solutions of the two initial 

value problems. The shooting method for the nonlinear boundary value problem is similar to the linear case, except that 

the solution of the nonlinear problem cannot be simply expressed as a linear combination of the solutions of the two 

initial value problems. Instead, we need to use a sequence of suitable initial values for the derivatives such that the 
tolerance at the end point of the range is very small. This sequence of initial values is given by the secand method, and 

we use the fourth order Runge-Kutta method to solve the initial value problems. 

The full equations (24) – (28) with the boundary conditions (29) were solved numerically using the Runge-Kutta 

method algorithm with a systematic guessing (0), (0), (0), (0)f g h      and (0)  by the shooting technique until the 

boundary conditions at infinity ( )f y  decay exponentially to one, also (0), ( ), ( )g h y y  and ( )y  to zero. The 

functions , , ,f g h     and  are shown in figures. 

 

Results and Discussion 
As a result of the numerical calculations, the dimensionless velocity, angular velocity, temperature, and 

concentration distributions for the flow under consideration are obtained and their behavior has been discussed for 

variations in the governing parameters, namely, the thermal Grashof number Gr, solutal Grashof number Gc, magnetic 

field parameter  , Darcy number Da, , porous medium inertia coefficient  , vortes viscosity parameter N, microrotation 

parameter G, Prandtl number Pr,  radiation parameter  , the parameter of relative difference between the temperature of 
the sheet and temperature far r, heat generation parameter Q, Eckert number Ec, Schmidt number Sc, and chemical 

reaction parameter Kr. In the present study, the following default parametric values are adopted: Gr = 1.0, Gc =1.0, M = 

0.01, Da = 100,   = 0.1, N = 0.1,   G = 2.0, Pr = 0.71, F = 1.0, r = 0.05, Q = 0.1, Ec = 0.05, Sc = 0.6, Kr = 0.5. All 

graphs therefore correspond to these unless specifically indicated on the appropriate graph. 

In order to assess the accuracy of our computed results, the present results have been compared with Abo-Eldahab 

and ELaziz [30] for different values of G as shown in Figure 1 with Gc = 0.0,   = 0.0,   = 0.0, Ec = 0.0, Sc = 0.0 and Kr 

= 0.0. It is observed that the agreements with the solution of angular velocity profiles are excellent. 
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Figure 2(a) shows the variation of the dimensionless velocity component  ′ for several sets of values of thermal 

Grashof number Gr. As expected, it is observed that there is a rise in the velocity due to enhancement of thermal 

buoyancy force. The variation of the dimensionless velocity component  ′ for several sets of values of solutal Grashof 

number Gc is depicted in Figure 2(b). As expected, the fluid velocity increases and the peak value is more distinctive due 

to the increase in the species buoyancy force. It should be mentioned herein that the profiles of , ,g h   and   were 

found to be insensible to change in Gr and Gc, therefore, not shown herein for brevity. 

The effect of variation of the magnetic parameter   on the velocity ( ′ and  ′), angular velocity h , temperature 

 , and concentration   profiles is presented in Figures 3(a)– 3(e) respectively. It is well known that the application of a 

uniform magnetic field normal to the flow direction gives rise to a force called Lorentz. This force has the tendency to 

slow down the velocity of the fluid and angular velocity of microrotation in the boundary layer and to increase its 

temperature and concentration. This is obvious from the decreases in the velocity profiles, angular velocity of 

microrotation profiles, while temperature and concentration profiles increases, presented in Figures. 3(a) – 3(e). 

Figures 4(a)–4(e) present typical profiles for the variables of the fluid’s  -component of velocity ( ′ and  ′), 

angular velocity h , temperature  , and concentration   for different values of Darcy number Da. It is noted that values 

of Da increase the fluid velocities and angular velocity increases, while temperature and concentration of the fluid 

decrease. 

Figures 5(a)–5(e) present the typical profiles for the variables of the fluid’s x-component of velocity ( ′ and  ′), 

angular velocity h , temperature   and concentration   for different values of the porous medium inertia coefficient  . 

Obviously, the porous medium inertia effects constitute resistance to the flow. Thus as the inertia coefficient increases, 

the resistance to the flow increases, causing the fluid flow in the porous medium to slow down and the temperature and 

concentration increase and, therefore, as   increases  ′,  ′, and h  decreases while the temperature   and concentration 

  increase. 

Figures 6(a)–6(e) present the typical profiles for the variables of the fluid’s  -component of velocity ( ′ and  ′), 

angular velocity h , temperature  , and concentration   for different values of the vortex viscosity parameter   . 

Increases in the values of   have a tendency to increase  ′, h ,  , and   and to decrease  ′. 

Figure 7 is a plot of the dimensionless angular velocity h  profiles for different values of the presence of the 

microrotation parameter  . The curves illustrate that, as the values of   increases, the angular velocity h  , as expected, 

decreases with an increase in the boundary layer thickness as the maximum moves away from the sheet. Of course, when 

the viscosity of the fluid decreases the angular velocity of additive increases. 

Figure 8(a) Illustrates the dimensionless velocity component  ′ for different values of the Prandtl number Pr. The 

numerical results show that the effect of increasing values of the Prandtl number results in a decreasing velocity. From 

Figure 8(b), it is observed that an increase in the Prandtl number results in a decrease of the thermal boundary layer 

thickness and in general lower average temperature within the boundary layer. The reason is that smaller values of Pr are 

equivalent to increasing the thermal conductivities, and therefore heat is able to diffuse away from the heated plate more 

rapidly than for higher values of Pr. Hence in the case of smaller Prandtl numbers as the boundary layer is thicker, the 

rate of heat transfer is reduced.  

The effect of the radiation parameter   on the dimensionless velocity component f   and dimensionless 

temperature is shown in Figures 9 (a) and 9 (b) respectively. Figure 9 (a) shows that velocity component  ′ decreases 

with an increase in the radiation parameter  . From Figure 9(b) it is seen that the temperature decreases as the radiation 

parameter   increases. This result qualitatively agrees with expectations, since the effect of radiation is to decrease the 

rate of energy transport to the fluid, thereby decreasing the temperature of the fluid. 

The influence of the parameter of relative difference between the temperature of the sheet and the temperature far 

away from the sheet   on dimensionless velocity  ′ and temperature profiles are plotted in Figures 10(a) and 10(b), 

respectively. Figure 10(a) shows that dimensionless velocity  ′ increases with an increase in  . It is observed that the 

temperature increases with an increase in r (Figure 10(b)).  

Figures 11(a) and 11(b) illustrate the respective changes in the profiles of  ′ and   as the heat generation coefficient 

  is changed. It is clear from Figures 11(a) and 11(b) that increasing in the values of   produces increases in the velocity 

 ′ and temperature   distributions of the fluid. This is expected since heat generation ( 0)Q   causes the thermal 

boundary layer to become thicker and the fluid to be warmer. This enhances the effects of thermal buoyancy of the 

driving body force due to mass density variations which are coupled to the temperature distribution and therefore 

increasing the fluid velocity distribution. No figures for  ′, h  and   are presented for the same reason as mentioned 

before. 

Figures 12 (a) and 12(b) display the respective changes in the profiles of  ′ and   as the Eckert number Ec is 

changed. The positive Eckert number implies cooling of the plate i.e., loss of heat from the plate to the fluid. Hence, 

greater viscous dissipative heat causes a rise in the temperature as well as the velocity, which is evident from Figures 

12(a) and 12(b). 

The influence of the Schmidt number Sc on the dimensionless velocity f  and concentration profiles is plotted in 

Figures 13(a) and 13(b), respectively. As the Schmidt number increases the concentration decreases. This causes the 

concentration buoyancy effects to decrease yielding a reduction in the fluid velocity. The reductions in the velocity and 

concentration profiles are accompanied by simultaneous reductions in the velocity and concentration boundary layers. 
These behaviors are clear from Figures 13(a) and 13(b). 
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The effects of the chemical reaction parameter Kr on dimensionless velocity component f  and concentration 

profiles are plotted in figures 14(a) and 14(b). As the chemical reaction parameter increases the velocity and 

concentration profiles are decreases. These behaviors are clear from Figures 14(a) and 14(b). 

Finally, in order to verify the proper treatment of the present problem, we will compare the obtained numerical 

solution with results reported by Abo-Eldahab and El Aziz [30]. Table 1 presents comparisons for the velocities of  ′′(0) 

and  ′′(0) values for various   values. These comparisons show excellent agreement between the results. 

Table 2 illustrates the missing wall functions for velocity, angular velocity, temperature, and concentration 

functions. These quantities are useful in the evaluation of wall shear stresses, gradient of angular velocity, surface heat 

transfer rate, and mass transfer rate. The results are obtained for    = 0.05 and different values of the thermal Grashof 

number Gr, solutal Grashof number Gc, magnetic field parameter  , Darcy number Da, porous medium inertia 

coefficient   , vortes viscosity parameter  , microrotation parameter  , radiation parameter  , the parameter of relative 

difference between the temperature of the sheet and temperature far away from the sheet  , Prandtl number Pr, heat 
generation parameter Q, Eckert number Ec, and Schmidt number Sc. Table 1 indicates that increasing the values of the 

Grashof number Gr and solutal Grashof number Gc results in an increase in the values of  ′′(0). This is because as Gr 

and Gc increase, the momentum boundary layer thickness decreases and, therefore, an increase in the values of  ′′(0) 

occurs. The results indicate that a distinct fall in the skin-friction coefficient in the  -direction  ( ′′(0) and  ′′(0)), the 

surface heat transfer rate − ′(0), and mass transfer rate − ′(0), while gradient of angular velocity (0)h  increases 

accompanies a rise in the magnetic field parameter  . Increases in the values of Da have the effect of increasing the 

skin-friction function  ′′(0), heat transfer rate − ′(0) and mass transfer rate − ′(0) while the gradient of angular velocity 

(0)h  and the skin-friction function  ′′(0) slightly decreases as Da increases. Further, the influence of the porous 

medium inertia coefficient   on the wall shear stresses, gradient of angular velocity, surface heat transfer, and surface 

mass transfer rate is the same as that of the inverse Darcy number Da, since it also represents resistance to the flow. 

Namely, as   increases,  ′′(0),  ′(0),  ′(0) decrease while  ′′(0), (0)h  slightly increases, respectively.  

From Table 3 for given values of Gr, Gc,  , Da,  , Sc and Kr an increase in the values of microrotation parameter 

  leads to reduction in the skin-friction function  ′′(0),  ′(0) and  ′(0) while the skin-friction function  ′′(0) and gradient 

of angular velocity (0)h , increase as   increases. The skin friction  ′′(0) increases and the gradient of angular velocity 

(0)h  is decreased as the microrotation parameter   increases, while the skin-friction coefficient in the x-directions 

 ′′(0) heat transfer rate − ′(0), and mass transfer rate − ′(0) are insensible to change in G. Increasing the values of heat 

generation parameter   or Eckert number Ec results in an increase in the values of  ′′(0) and the heat transfer rate − ′(0) 

decreases. It is observed that the magnitude of the wall temperature gradient increases as Prandtl number Pr or radiation 

parameter   increases.  

From Table 4, the magnitude of the wall concentration increases with an increase in the Schmidt number Sc or 

chemical reaction parameter Kr . Furthermore, the negative values of the wall temperature and concentration gradients, 
for all values of the dimensionless parameters, are indicative of the physical fact that the heat flows from the sheet 

surface to the ambient fluid. 
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Table 1 Comparison of the present results with the literature results given by Abo-Eldahab E M and Aziz M A El [23],  

Gc = 0.0, F = 0.0, r = 0.0, Sc = 0.0. Pr =1.0, Da = 100,   = 0.01, N1 = 0.1, G = 2, Gr = 0.5, Q = 0.1. 

M (0)f   (0)g  

 Present Abo-Eldahab [30 ] Present Abo-Eldahab[30] 

0.1 0.67059875 0.6708520 -1.0002147 -0.998951 

0.2 0.57169871 0.5717493 -1.0002075 -0.998905 

 

Table 2 Variation of , , ,f g h     and   at the plate with Gr, Gc, M, Da and   for N = 0.1, G = 2.0, Pr = 0.71, F 

= 1.0, r = 0.05, Q = 0.1, Ec = 0.05, Sc = 0.6, Kr = 0.5. 

Gr Gc M Da   (0)f   (0)g  (0)h  (0)  (0)  

1.0 1.0 0.01 100 0.1 2.03879 -1.0669 0.263381 0.221525 0.698487 

2.0 1.0 0.01 100 0.1 3.05663 -1.09305 0.267723 0.190593 0.69596 

3.0 1.0 0.01 100 0.1 4.06781 -1.11759 0.271691 0.148666 0.693639 

1.0 2.0 0.01 100 0.1 2.7094 -1.08133 0.26557 0.206615 0.697201 

1.0 3.0 0.01 100 0.1 3.37401 -1.09525 0.267659 0.18842 0.695971 

1.0 1.0 0.03 100 0.1 2.01038 -1.07481 0.26414 0.221955 0.698037 

1.0 1.0 0.05 100 0.1 1.98296 -1.08271 0.264898 0.222336 0.697586 

1.0 1.0 0.01 10 0.1 1.91849 -1.10242 0.266785 0.223097 0.696464 

1.0 1.0 0.01 50 0.1 2.02446 -1.07086 0.26376 0.221746 0.698262 

1.0 1.0 0.01 100 0.3 1.82487 -1.14747 0.276459 0.220016 0.690858 

1.0 1.0 0.01 100 0.5 1.69724 -1.20516 0.28477 0.218282 0.68592 

 

Table 3 Variation of , , ,f g h      and   at the plate with G, Pr, N, F, Q, Ec for Gr = 1.0, Gc =1.0, M = 0.01, Da = 

100, Sc = 0.6, Kr = 0.5. 

 

G Pr N F Q Ec (0)f   (0)g  (0)h  (0)  (0)  

2 0.71 0.1 1.0 0.1 0.05 2.03879 -1.0669 0.263381 0.221525 0.698487 

3 0.71 0.1 1.0 0.1 0.05 2.03789 -1.06794 0.192267 0.221645 0.698542 

4 0.71 0.1 1.0 0.1 0.05 2.03734 -1.06859 0.152723 0.221716 0.698571 

2 1.0 0.1 1.0 0.1 0.05 1.9971 -1.0653 0.263064 0.242647 0.698668 

2 2.0 0.1 1.0 0.1 0.05 1.84742 -1.05963 0.261965 0.345313 0.699296 

2 0.71 0.3 1.0 0.1 0.05 2.04717 -1.0567 0.264163 0.220518 0.698164 

2 0.71 0.5 1.0 0.1 0.05 2.05609 -1.04641 0.264993 0.219448 0.697816 

2 0.71 0.1 2.0 0.1 0.05 1.99298 -1.06515 0.263036 0.246632 0.698684 

2 0.71 0.1 3.0 0.1 0.05 1.9671 -1.06416 0.262843 0.262791 0.698794 

2 0.71 0.1 1.0 0.2 0.05 2.08389 -1.06854 0.263693 0.171505 0.698309 

2 0.71 0.1 1.0 0.3 0.05 2.13599 -1.07043 0.264052 0.115424 0.698102 

2 0.71 0.1 1.0 0.1 0.07 2.04179 -1.067 0.263398 0.212343 0.698477 

2 0.71 0.1 1.0 0.1 0.1 2.04634 -1.06715 0.263424 0.198443 0.698462 

 



G.J. E.D.T.,Vol.3(4):28-40                                               (July-August, 2014)                                  ISSN: 2319 – 7293 

39 

Table 4 Variation of  , , ,f g h      and   at the plate with Sc and Kr for  Gr = 1.0, Gc =1.0, M = 0.01, Da = 100, G 

= 2.0, Pr = 0.71, N = 0.1, F = 1.0, Q = 0.1, Ec = 0.05. 

Sc Kr (0)f   (0)g  (0)h  (0)  (0)  

0.6 0.5 1.87502 -1.06177 0.262497 0.213985 1.19009 

0.78 0.5 1.97791 -1.06484 0.263009 0.223483 0.806176 

0.94 0.5 1.93518 -1.06343 0.262759 0.22477 0.893162 

0.6 1.0 1.95391 -1.06412 0.262888 0.224133 0.894788 

0.6 2.0 1.85936 -1.06118 0.262382 0.226705 1.19012 
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