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Abstract

The cosine-function method and the modified extended tanh method
are efficient methods for obtaining exact soliton solutions of nonlinear
partial differential equations. These methods can be applied to nonin-
tegrable equations as well as to integrable ones. In this paper, we look
for exact soliton solutions of generalized Zakharov equation.
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1 Introduction

Exact solutions to nonlinear evolution equations play an important role in
nonlinear physical science, since these solutions may well describe various nat-
ural phenomena, such as vibrations, solitons, and propagation with a finite
speed. Recently many new approaches for finding the exact solutions to non-
linear evolution equations have been proposed, such as tanh-sech method [1],
2], [3], extended tanh method [4], [5], [6], hyperbolic function method [7],
sine-cosine method [8], [9], [10], Jacobi elliptic function expansion method
[11], F-expansion method [12] ,and the first integral method [13], [14]. In
recent years, there was interest in obtaining exact solutions of NLPDESs by ex-
tended tanh method and cosine-function method. The standard tanh method
is developed by Malfliet [1]. Lately, Wazwaz investigated exact solutions of
the Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations by
the extended tanh method [6]. Fan in [16] presented the generalized tanh
method for constructing the exact solutions of NLPDESs, such as, the (2 + 1)-
dimensional sine-Gordon equation and the double sine-Gordon equation. The
generalized Zakharov(GZ)equation [15] is in the following form:

ity + Uge — 2a|u|*u + 2uv = 0,

Vit — Ugg + (\UP)M =0.

The aim of this paper is to find exact soliton solutions of generalized Za-
kharov equation by the cosine-function method and the modified extended
tanh method( METM).

2 The cosine-function method
Consider the nonlinear partial differential equation in the form
F (U, Uy gy Uy Uy -..) = 0, (1)

where u = u(x,t) is the solution of nonlinear partial differential equation Eq.
(1). We use the transformations,

u(z,t) = f(§), (2)
where £ = x — ct. This enables us to use the following changes:

0 0 0 0 02 02
5(-)2—08—5(-)7 %O:a_g(')’ @(-)28—52(-)7 (3)
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Using Eq. (3) to transfer the nonlinear partial differential equation Eq. (1) to
nonlinear ordinary differential equation

67 ZEL L ) o ()

The solution of Eq. (4) can be expressed in the form:

J©) = reos”(ue),  lel < o (5)
1
where \, § and p are unknown parameters which will be determined. Then we
have:
0
22— ASucos" () sin(u),
2
DI — i o () + M85 — 1) cos” (1) (6)

Substituting Eq. (5) and Eq. (6) into the nonlinear ordinary differential equa-
tion Eq. (4) gives a trigonometric equation of cos®(u) terms.To determine the
parameters first balancing the exponents of each pair of cosine to determine
a.Then we collect all terms with the same power in cos”(u€) and put to zero
their coefficients to get a system of algebraic equations among the unknowns
A, B and pu. Now, the problem is reduced to a system of algebraic equations
that can be solved to obtain the unknown parameters A\, 8 and p. Hence, the
solution considered in Eq. (5) is obtained.

3 Modified extended tanh method

For given a nonlinear equation
F(u, ug, wy, U, Ugg, Ugy, Ugt, ...) =0, (7)

when we look for its traveling wave solutions, the first step is to introduce the
wave transformation u(z,y,t) = U(§), & = x + vy + At and change Eq. (7)
to an ordinary differential equation(ODE)

HU, U, U",U",..) =0, 8)

The next crucial step is to introduce a new variable ¢ = ¢(§), which is a
solution of the Riccati equation

d¢

d—£:k+q§2. (9)
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The modified extended tanh method admits the use of the finite expansion:
u(w,y,t) = U(§) = Y aip'(§) + Y bip™" (), (10)
i=0 i=1

where the positive integer m is usually obtained by balancing the highest-
order linear term with the nonlinear terms in Eq. (8). Expansion (10) reduces
to the generalized tanh method [16] for b, = 0, i = 1,...,m. Substituting
Eq. (9) and Eq. (10) into Eq. (8) and then setting zero all coefficients
of ¢*(£), we can obtain a system of algebraic equations with respect to the
constants k, vy, A, ag, ..., @, b1, ..., by. Then we can determine the constants
k., A, ag, ..., Qm, b1, ..., by,. The Riccati equation (9) has the general solutions:
If £ <0 then

d(€) = —v/—k tanh(v/—k£), (11)
¢(€) = —v/—k coth(v/—k¢).
If £ =0 then )
o(§) = e (12)
If £ > 0 then
(&) = Vk tan(VkE), (13)

$(&) = —Vk cot(Vk¢).

Therefore,by the sign test of k, we obtain exact soliton solutions of Eq. (7).

4 Exact solutions of GZ equation by cosine
method

Let us consider the generalized Zakharov(GZ)equation [15]:
iy + Ugy — 2a|ul*u + 2uv = 0, (14)

Vit — Uy + (|u|2)xx =0. (15)

We introduce the transformations
u(e,t) = €°U(E), v(ot) =V(E), O=av+pt, €=z—2at,  (16)

where «, and [ are real constants.Hence,

wi = (1BU() - 2aag—f)>e”, an)
Uy = (—?U + 2@'048(](&) + 82U(£))ew, (18)

o€ €2
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2 2
9¢? o¢?

Substituting (16) into Eqs. (14)-(15), and using (17)-(19), we have the ordinary

differential equations (ODEs) for U(¢) and V(&)

Vg = 40[2

—(B+a")U(€) + U" (&) — 2aU°(g) + 2U(§)V(€) =0, (20)

(402 = )V"(&) + (U*(€))" = 0. (21)
Integrating (21), we get

(da® = V(&) + (U*(€)) = C,

where C' is integration constant. Because we will find the special form of
exact solutions and,for simplicity purpose, we take C' = 0 and, integrating this
formula once again, we have

(22)

where C' is integration constant.
Substituting the (22) into (20) yields

(Bt~ 2 Ju(e) — U(€) + 2a +

e e =0, (23)

4o — 1
Substituting Eq. (5) and Eq. (6) into (23) gives:

2C
4?2 — 1

+2(a + 22—) (A cos” (11€))® = 0.

(B+a” )(Arcos™ (11€))— (= Ap3 B cos™ (&) +Apd B1(Br—1) cos™ 2 (1 €))

By equating the exponents and the coefficients of each pair of the cosine func-
tion we obtain the following system of algebraic equations:

(B+a® — )AL+ A B =0,

_2
40?2 — 1
361 =1 — 2.

Solving the system (24),we obtain:

b= 1 m ﬁfc_w;fi)(fatl)a (25)

w1 =" 24
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B 2C — (B +a?)(4a? —1)
A= id a(4a? —1)+1 '

Substituting (25) into Eq. (5), we obtain exact soliton solutions of the gener-
alized Zakharov(GZ)equation in the forms

U(l',t) _ i€i(ax+ﬁt)$ 20 — (5 + a2)(4a2 — 1) SGC[\/2C - (5 + a2)(4a2 — 1) (:17—2at)],

a(da? —1)+1 402 — 1

C L 20— (B+a*)(a” 1)

t) = -
vlz,t) 402 =1 4a?-—1 a(da? —1)+1

swﬁ¢”?‘<€;f?$ﬂ2‘1%x-2a0L
where
20— (B+a?)(a® 1) _

4a? —1

5 Exact solutions of GZ equation by METM

As shown before, the equation as follows:
—(B+a?)U(&) + U" (&) — 2aU°(¢) + 2U(§)V(€) = 0, (26)
(4a® = 1)V"(€) + (U*(€))" = 0. (27)
is the transformed ODE of the GZ equation with using the wave variables
u(z,t) = eU(€), wv(x,t)=V(€), O=az+pt, &=x—2at
Substituting the (22) into (26) yields

(540" — 2 )U(E) ~ U"(€) + 2(a +

U =0 (28)

Balancing U” with U3 in Eq. (28) give
m—+2=3m,

so that m = 1.
The modified extended tanh method (10) admits the use of the finite expansion

b

(29)
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Substituting (29) into Eq. (28), making use of Eq. (9),collecting the coeffi-
cients of ¢*(£) — 3 < i < 3, we obtain:

Coefficient of ¢*: —2a; + 2(a + ;5—)al.

Coefficient of ¢* 6(a + 13— )aoal.

Coefficient of ¢*: 6(a+ 12— 1)bla1+6(a+4a21 1)a0a1—2ka1+(ﬁ+a2— s )a.
Coefficient of ¢%: 12(a + 15— )aoarbr + 2(a + 75— 1)a0 (B+ a* — 555 )ao.
Coefficient of ¢~ 6(a+ 13— )biar —2kby +(B+a® — 55 )b1+6(a+ 13— )adb.
Coefficient of ¢=2: 6(a + 72— )aob}.
Coefficient of ¢=3: —2k?b; + 2(a +

)by

421

Setting these coefficients equal to zero, and solving the resulting system, by
using Maple, we find the following set of solutions:

1 —4pa?+ B —4a* + a? +2C

Go=a =0, b= :t§\/16aoz4 8aa? +a+4a2 -1’ (30)
k:_1—4/3a + B —4a* +a? + 20
2 402 — 1 ’
2
a =0, ay =+ 4&;*3_—‘@11, by = 0, (31)
k:_1—4ﬁa2—|—5—4a4+a2+20
2 402 — 1 ’

where o and [ are arbitrary constants.

By using (11) and (29), the sets (30)-(31) give the following solutions:

\/ (—4Ba® + B — 4’ +a? +20) (402 — 1)
16aa* — 8aa? + a + 4a? — 1

f 45a2+ﬁ 4at 4 a2 +2C
S 6)
_2\/—45a2+6—4a4+a2+20><
dac® —a+1
h(ﬁ\/—4ﬂa2+ﬁ—4a4+a2+20
2 402 —1

£),

for k < 0.
Thus,in (z,t)-variables we have

(x,t) = ieﬂawwwﬁ\/ (z4Pa*+ S —da’+a? +20) (40P — 1)
T 16aa?* — 8aa? 4+ a + 402 — 1
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\/5\/—45a2+ﬁ—4a4+a2+20
th(—- — 2at
—48a —4at+o a2 — —418a At
v (SL’ t) _ C o (@ ( 461;2_0154—4811:—"2_—1—21242%(:11 L COth(@\/ = 2+ia§—i+ 242C (CU - 20(t)))2
BT a2 -1 a2 — 1 :
, V2 [—4Ba? + 3 —4dat + a2 + 1
t) =+ i(az+pt) V¥ 2 %
el 1) ‘ 2 dac® —a+1
\/5\/—45a2+ﬁ—4a4+a2+20
tanh(— — 2at
an ( 2 4@2_1 (flj O{)),
ety — O VPV tanh(R SRR @ - 2at)))?
LY 4a -1 4a? — 1
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