
Mathematica Aeterna, Vol. 2, 2012, no. 4, 287 - 295

The cosine-function method and

the modified extended tanh method

to generalized Zakharov system

Nasir Taghizadeh

Department of Mathematics, Faculty of Sciences,
university of Guilan, P.O. Box 1914, Rasht, Iran

taghizadeh@guilan.ac.ir

Mohammadali Mirzazadeh

Department of Mathematics, Faculty of Sciences,
university of Guilan, P.O. Box 1914, Rasht, Iran

mirzazadehs2@guilan.ac.ir

Ameneh Samiei Paghaleh

Department of Mathematics, Faculty of Sciences,
university of Guilan, P.O. Box 1914, Rasht, Iran

ameneh.samiei@gmail.com

Abstract

The cosine-function method and the modified extended tanh method

are efficient methods for obtaining exact soliton solutions of nonlinear

partial differential equations. These methods can be applied to nonin-

tegrable equations as well as to integrable ones. In this paper, we look

for exact soliton solutions of generalized Zakharov equation.
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1 Introduction

Exact solutions to nonlinear evolution equations play an important role in
nonlinear physical science, since these solutions may well describe various nat-
ural phenomena, such as vibrations, solitons, and propagation with a finite
speed. Recently many new approaches for finding the exact solutions to non-
linear evolution equations have been proposed, such as tanh-sech method [1],
[2], [3], extended tanh method [4], [5], [6], hyperbolic function method [7],
sine-cosine method [8], [9], [10], Jacobi elliptic function expansion method
[11], F-expansion method [12] ,and the first integral method [13], [14]. In
recent years, there was interest in obtaining exact solutions of NLPDEs by ex-
tended tanh method and cosine-function method. The standard tanh method
is developed by Malfliet [1]. Lately, Wazwaz investigated exact solutions of
the Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations by
the extended tanh method [6]. Fan in [16] presented the generalized tanh
method for constructing the exact solutions of NLPDEs, such as, the (2 + 1)-
dimensional sine-Gordon equation and the double sine-Gordon equation. The
generalized Zakharov(GZ)equation [15] is in the following form:

iut + uxx − 2a|u|2u+ 2uv = 0,

vtt − vxx + (|u|2)xx = 0.

The aim of this paper is to find exact soliton solutions of generalized Za-
kharov equation by the cosine-function method and the modified extended
tanh method(METM).

2 The cosine-function method

Consider the nonlinear partial differential equation in the form

F (u, ux, ut, uxx, uxt, ...) = 0, (1)

where u = u(x, t) is the solution of nonlinear partial differential equation Eq.
(1). We use the transformations,

u(x, t) = f(ξ), (2)

where ξ = x− ct. This enables us to use the following changes:

∂

∂t
(.) = −c

∂

∂ξ
(.),

∂

∂x
(.) =

∂

∂ξ
(.),

∂2

∂x2
(.) =

∂2

∂ξ2
(.), .... (3)
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Using Eq. (3) to transfer the nonlinear partial differential equation Eq. (1) to
nonlinear ordinary differential equation

G(f(ξ),
∂f(ξ)

∂ξ
,
∂2f(ξ)

∂ξ2
, ...) = 0. (4)

The solution of Eq. (4) can be expressed in the form:

f(ξ) = λ cosβ(µξ), |ξ| ≤ π

2µ
, (5)

where λ, β and µ are unknown parameters which will be determined. Then we
have:

∂f(ξ)

∂ξ
= −λβµ cosβ−1(µξ) sin(µξ),

∂2f(ξ)

∂ξ2
= −λµ2β2 cosβ(µξ) + λµ2β(β − 1) cosβ−2(µξ). (6)

Substituting Eq. (5) and Eq. (6) into the nonlinear ordinary differential equa-
tion Eq. (4) gives a trigonometric equation of cosα(µξ) terms.To determine the
parameters first balancing the exponents of each pair of cosine to determine
α.Then we collect all terms with the same power in cosβ(µξ) and put to zero
their coefficients to get a system of algebraic equations among the unknowns
λ, β and µ. Now, the problem is reduced to a system of algebraic equations
that can be solved to obtain the unknown parameters λ, β and µ. Hence, the
solution considered in Eq. (5) is obtained.

3 Modified extended tanh method

For given a nonlinear equation

F (u, ux, uy, ut, uxx, uxy, uxt, ...) = 0, (7)

when we look for its traveling wave solutions, the first step is to introduce the
wave transformation u(x, y, t) = U(ξ), ξ = x + γy + λt and change Eq. (7)
to an ordinary differential equation(ODE)

H(U, U ′, U ′′, U ′′′, ...) = 0. (8)

The next crucial step is to introduce a new variable φ = φ(ξ), which is a
solution of the Riccati equation

dφ

dξ
= k + φ2. (9)
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The modified extended tanh method admits the use of the finite expansion:

u(x, y, t) = U(ξ) =
m
∑

i=0

aiφ
i(ξ) +

m
∑

i=1

biφ
−i(ξ), (10)

where the positive integer m is usually obtained by balancing the highest-
order linear term with the nonlinear terms in Eq. (8). Expansion (10) reduces
to the generalized tanh method [16] for bi = 0, i = 1, ..., m. Substituting
Eq. (9) and Eq. (10) into Eq. (8) and then setting zero all coefficients
of φi(ξ), we can obtain a system of algebraic equations with respect to the
constants k, γ, λ, a0, ..., am, b1, ..., bm. Then we can determine the constants
k, γ, λ, a0, ..., am, b1, ..., bm. The Riccati equation (9) has the general solutions:
If k < 0 then

φ(ξ) = −
√
−k tanh(

√
−kξ), (11)

φ(ξ) = −
√
−k coth(

√
−kξ).

If k = 0 then

φ(ξ) = −1

ξ
. (12)

If k > 0 then
φ(ξ) =

√
k tan(

√
kξ), (13)

φ(ξ) = −
√
k cot(

√
kξ).

Therefore,by the sign test of k, we obtain exact soliton solutions of Eq. (7).

4 Exact solutions of GZ equation by cosine

method

Let us consider the generalized Zakharov(GZ)equation [15]:

iut + uxx − 2a|u|2u+ 2uv = 0, (14)

vtt − vxx + (|u|2)xx = 0. (15)

We introduce the transformations

u(x, t) = eiθU(ξ), v(x, t) = V (ξ), θ = αx+ βt, ξ = x− 2αt, (16)

where α, and β are real constants.Hence,

ut = (iβU(ξ)− 2α
∂U(ξ)

∂ξ
)eiθ, (17)

uxx = (−α2U + 2iα
∂U(ξ)

∂ξ
+

∂2U(ξ)

∂ξ2
)eiθ, (18)
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vtt = 4α2∂
2V (ξ)

∂ξ2
, vxx =

∂2V (ξ)

∂ξ2
. (19)

Substituting (16) into Eqs. (14)-(15), and using (17)-(19), we have the ordinary
differential equations (ODEs) for U(ξ) and V (ξ)

−(β + α2)U(ξ) + U ′′(ξ)− 2aU3(ξ) + 2U(ξ)V (ξ) = 0, (20)

(4α2 − 1)V ′′(ξ) + (U2(ξ))′′ = 0. (21)

Integrating (21), we get

(4α2 − 1)V ′(ξ) + (U2(ξ))′ = C̃,

where C̃ is integration constant. Because we will find the special form of
exact solutions and,for simplicity purpose, we take C̃ = 0 and, integrating this
formula once again, we have

V (ξ) =
C − U2(ξ)

4α2 − 1
, (22)

where C is integration constant.
Substituting the (22) into (20) yields

(β + α2 − 2C

4α2 − 1
)U(ξ)− U ′′(ξ) + 2(a+

1

4α2 − 1
)U3(ξ) = 0. (23)

Substituting Eq. (5) and Eq. (6) into (23) gives:

(β+α2− 2C

4α2 − 1
)(λ1 cos

β1(µ1ξ))−(−λ1µ
2
1β

2
1 cos

β1(µ1ξ)+λ1µ
2
1β1(β1−1) cosβ1−2(µ1ξ))

+2(a+ 1
4α2−1

)(λ1 cos
β1(µ1ξ))

3 = 0.

By equating the exponents and the coefficients of each pair of the cosine func-
tion we obtain the following system of algebraic equations:

(β + α2 − 2C

4α2 − 1
)λ1 + λ1µ

2
1β

2
1 = 0,

−λ1µ
2
1β1(β1 − 1) + 2λ3

1(a +
1

4α2 − 1
) = 0, (24)

3β1 = β1 − 2.

Solving the system (24),we obtain:

β1 = −1, µ1 = ±
√

2C − (β + α2)(4α2 − 1)

4α2 − 1
, (25)
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λ1 = ±
√

√

√

√

2C − (β + α2)(4α2 − 1)

a(4α2 − 1) + 1
.

Substituting (25) into Eq. (5), we obtain exact soliton solutions of the gener-
alized Zakharov(GZ)equation in the forms

u(x, t) = ±ei(αx+βt)

√

√

√

√

2C − (β + α2)(4α2 − 1)

a(4α2 − 1) + 1
sec[

√

2C − (β + α2)(4α2 − 1)

4α2 − 1
(x−2αt)],

v(x, t) =
C

4α2 − 1
− 1

4α2 − 1

2C − (β + α2)(4α2 − 1)

a(4α2 − 1) + 1
×

sec2[

√

2C − (β + α2)(4α2 − 1)

4α2 − 1
(x− 2αt)],

where
2C − (β + α2)(4α2 − 1)

4α2 − 1
> 0.

5 Exact solutions of GZ equation by METM

As shown before, the equation as follows:

−(β + α2)U(ξ) + U ′′(ξ)− 2aU3(ξ) + 2U(ξ)V (ξ) = 0, (26)

(4α2 − 1)V ′′(ξ) + (U2(ξ))′′ = 0. (27)

is the transformed ODE of the GZ equation with using the wave variables

u(x, t) = eiθU(ξ), v(x, t) = V (ξ), θ = αx+ βt, ξ = x− 2αt.

Substituting the (22) into (26) yields

(β + α2 − 2C

4α2 − 1
)U(ξ)− U ′′(ξ) + 2(a+

1

4α2 − 1
)U3(ξ) = 0. (28)

Balancing U ′′ with U3 in Eq. (28) give

m+ 2 = 3m,

so that m = 1.
The modified extended tanh method (10) admits the use of the finite expansion

U(ξ) = a0 + a1φ(ξ) +
b1

φ(ξ)
. (29)
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Substituting (29) into Eq. (28), making use of Eq. (9),collecting the coeffi-
cients of φi(ξ) − 3 ≤ i ≤ 3, we obtain:

Coefficient of φ3: −2a1 + 2(a+ 1
4α2−1

)a31.

Coefficient of φ2: 6(a+ 1
4α2−1

)a0a
2
1.

Coefficient of φ1: 6(a+ 1
4α2−1

)b1a
2
1+6(a+ 1

4α2−1
)a20a1−2ka1+(β+α2− 2C

4α2−1
)a1.

Coefficient of φ0: 12(a+ 1
4α2−1

)a0a1b1 + 2(a+ 1
4α2−1

)a30 + (β + α2 − 2C
4α2−1

)a0.

Coefficient of φ−1: 6(a+ 1
4α2−1

)b21a1−2kb1+(β+α2− 2C
4α2−1

)b1+6(a+ 1
4α2−1

)a20b1.

Coefficient of φ−2: 6(a+ 1
4α2−1

)a0b
2
1.

Coefficient of φ−3: −2k2b1 + 2(a+ 1
4α2−1

)b31.

Setting these coefficients equal to zero, and solving the resulting system, by
using Maple, we find the following set of solutions:

a0 = a1 = 0, b1 = ±1

2

−4βα2 + β − 4α4 + α2 + 2C√
16aα4 − 8aα2 + a+ 4α2 − 1

, (30)

k = −1

2

−4βα2 + β − 4α4 + α2 + 2C

4α2 − 1
,

a0 = 0, a1 = ±
√

4α2 − 1

4aα2 − a+ 1
, b1 = 0, (31)

k = −1

2

−4βα2 + β − 4α4 + α2 + 2C

4α2 − 1
,

where α and β are arbitrary constants.

By using (11) and (29), the sets (30)-(31) give the following solutions:

U1(ξ) = ±
√
2

2

√

(−4βα2 + β − 4α4 + α2 + 2C)(4α2 − 1)

16aα4 − 8aα2 + a + 4α2 − 1
×

coth(

√
2

2

√

−4βα2 + β − 4α4 + α2 + 2C

4α2 − 1
ξ),

U2(ξ) = ±
√
2

2

√

−4βα2 + β − 4α4 + α2 + 2C

4aα2 − a+ 1
×

tanh(

√
2

2

√

−4βα2 + β − 4α4 + α2 + 2C

4α2 − 1
ξ),

for k < 0.
Thus,in (x, t)-variables we have

u1(x, t) = ±ei(αx+βt)

√
2

2

√

(−4βα2 + β − 4α4 + α2 + 2C)(4α2 − 1)

16aα4 − 8aα2 + a+ 4α2 − 1
×
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coth(

√
2

2

√

−4βα2 + β − 4α4 + α2 + 2C

4α2 − 1
(x− 2αt)),

v1(x, t) =
C

4α2 − 1
−
(
√
2
2

√

(−4βα2+β−4α4+α2+2C)(4α2−1)
16aα4−8aα2+a+4α2−1

coth(
√
2
2

√

−4βα2+β−4α4+α2+2C
4α2−1

(x− 2αt)))2

4α2 − 1
.

u2(x, t) = ±ei(αx+βt)

√
2

2

√

−4βα2 + β − 4α4 + α2 + 1

4aα2 − a+ 1
×

tanh(

√
2

2

√

−4βα2 + β − 4α4 + α2 + 2C

4α2 − 1
(x− 2αt)),

v2(x, t) =
C

4α2 − 1
−
(
√
2
2

√

−4βα2+β−4α4+α2+1
4aα2−a+1

tanh(
√
2
2

√

−4βα2+β−4α4+α2+2C
4α2−1

(x− 2αt)))2

4α2 − 1
.
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