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Abstract

The neutrix convolutions (1 + x)s ln(1 + x+)⊛ x
r and x

s ln(1 + x+)⊛ x
r

are evaluated for r, s = 0, 1, 2, . . . . Further results are also given.
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1 Introduction

In the following, D denotes the space of infinitely differentiable functions with
compact support and D′ denotes the space of distributions defined on D.

The convolution of certain pairs of distributions in D′ is usually defined as
follows, see for example Gel’fand and Shilov [5].

Definition 1.1 Let f and g be distributions in D′ satisfying either of the fol-
lowing conditions:

(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

Then the convolution f ∗ g is defined by the equation

〈(f ∗ g)(x), ϕ(x)〉 = 〈g(x), 〈f(t), ϕ(x+ t)〉〉
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for arbitrary test function ϕ in D.

The classical definition of the convolution is as follows:

Definition 1.2 If f and g are locally summable functions then the convolution
f ∗ g is defined by

(f ∗ g)(x) =

∫

∞

−∞

f(t)g(x− t) dt =

∫

∞

−∞

f(x− t)g(t) dt

for all x for which the integrals exist.

Note that if f and g are locally summable functions satisfying either of the
conditions (a) or (b) in Definition 1.1, then Definition 1.1 is in agreement with
Definition 1.2.

Definition 1.1 is rather restrictive and so a neutrix convolution was introduced
in [2]. In order to define the neutrix convolution, we first of all let τ be the function
in D, see Jones [6], satisfying the following conditions:

(i) τ(x) = τ(−x),
(ii) 0 ≤ τ(x) ≤ 1,
(iii) τ(x) = 1, |x| ≤ 1

2
,

(iv) τ(x) = 0, |x| ≥ 1.
The function τn is now defined by

τn(x) =







1, |x| ≤ n,

τ(nnx− nn+1), x > n,

τ(nnx+ nn+1), x < −n,

Definition 1.3 Let f and g be distributions in D′ and let fn = fτn for n =
1, 2, . . . . Then the neutrix convolution f ⊛g is defined to be the neutrix limit of the
sequence {fn ∗ g}, provided the limit h exists in the sense that

N−lim
n→∞

〈fn ∗ g, ϕ〉 = 〈h, ϕ〉

for all ϕ in D, where N is the neutrix, see van der Corput [1], having domain
N ′ = {1, 2, . . . , n, . . .} and range the real numbers with negligible functions finite
linear sums of the functions

nλ lnr−1 n, lnr n (λ > 0, r = 1, 2, . . .)

and all functions which converge to zero as n tends to infinity.

Note that the convolution fn ∗ g in this definition is in the sense of Definition
1.2, the support of fn being bounded. Note also that the neutrix convolution in
this definition, is in general non-commutative.

It was proved in [2] that if the convolution f ∗ g exists by Definition 1.1, then
the neutrix convolution f ⊛ g exists and

f ∗ g = f ⊛ g,

showing that Definition 1.3 is a generalization of Definition 1.1.



B. Fisher and F. Al-Sirehy 511

2 Main Results

We now prove

Theorem 2.1

(1 + x)s ln (1 + x+) ∗ x+
r =

r
∑

i=0

(

r

i

)

(−1)r−i
{(1 + x)r+s+1 ln(1 + x+)

r + s− i+ 1

−
[H(x) + x+]

r+s+1 − [H(x) + x+]
i

(r + s− i+ 1)2

}

(1)

for r, s = 0, 1, 2, . . . , where H(x) denotes Heaviside’s function.

Proof. When x < 0, it is clear that

(1 + x)s ln (1 + x+) ∗ x+
r = 0. (2)

When x > 0, we have on putting u = 1 + t

(1 + x)s ln (1 + x+) ∗ x+
r =

∫ x

0

(1 + t)s ln (1 + t)(x− t)r dt

=

∫

1+x

1

us ln u(1 + x− u)r du

=

r
∑

i=0

(

r

i

)

(1 + x)i(−1)r−i

∫

1+x

1

ur+s−i lnu du

=
r

∑

i=0

(

r

i

)

(−1)r−i
{(1 + x)r+s+1 ln(1 + x)

r + s− i+ 1

−
(1 + x)r+s+1 − (1 + x)i

(r + s− i+ 1)2

}

(3)

and equation (1) follows from equations (2) and (3).

Corollary 2.2

(1− x)s ln (1 + x−) ∗ x−

r =
r

∑

i=0

(

r

i

)

(−1)r−i
{(1− x)r+s+1 ln(1 + x−)

r + s− i+ 1

−
[H(−x) + x−]

r+s+1 − [H(−x) + x−]
i

(r + s− i+ 1)2

}

(4)

for r, s = 0, 1, 2, . . . .

Proof. Equation (4) follows from equation (1) on replacing x by −x.
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Theorem 2.3

xs ln (1 + x+) ∗ x+
r =

r
∑

i=0

(

r

i

) s
∑

j=0

(

s

j

)

(−1)s−j+r−i
[(1 + x)r+j+1 ln(1 + x+)

r + j − i+ 1

−
[H(x) + x+]

r+j+1 − [H(x) + x+]
i

(r + j − i+ 1)2

]

(5)

for r, s = 0, 1, 2, . . . .

Proof. When x < 0, it is clear that

xs ln (1 + x+) ∗ x+
r = 0. (6)

When x > 0, we have on putting u = 1 + t

xs ln (1 + x+) ∗ x+
r =

∫ x

0

ts ln (1 + t)(x− t)r dt

=

∫ x+1

1

(u− 1)s ln u(1 + x− u)r du

=

r
∑

i=0

(

r

i

) s
∑

j=0

(

s

j

)

(−1)s−j+r−i(1 + x)i
∫

1+x

1

ur+j−i ln u du

=
r

∑

i=0

(

r

i

) s
∑

j=0

(

s

j

)

(−1)s−j+r−i
[(1 + x)r+j+1 ln(1 + x)

r + j − i+ 1

−
(1 + x)r+j+1 − (1 + x)i

(r + j − i+ 1)2

]

(7)

and equation (5) follows from equations (6) and (7).

Corollary 2.4

xs ln (1 + x−) ∗ x−

r =

r
∑

i=0

(

r

i

) s
∑

j=0

(

s

j

)

(−1)r+s−j−i
{(1− x)r+j+1 ln(1 + x−)

r + j − i+ 1

−
[H(−x) + x−]

r+j+1 − [H(−x) + x−]
i

(r + j − i+ 1)2

}

(8)

for r, s = 0, 1, 2, . . . .

Proof. Equation (8) follows from equation (5) on replacing x by −x.

Theorem 2.5 The neutrix convolution (1 + x)s ln(1 + x+)⊛ xr exists and

(1 + x)s ln(1 + x+)⊛ xr =

r
∑

i=0

r+s−i+1
∑

k=1

(

r

i

)(

r + s− i+ 1

k

)

(1 + x)i(−1)r+i+k

k(r + s− i+ 1)
, (9)

for r, s = 0, 1, 2, . . . .
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Proof. Putting [(1+ x)s ln(1 + x+)]n = (1+ x)s ln(1+ x+)τn(x) and u = 1+ t,
we have

[(1 + x)s ln(1 + x+)]n ⊛ xr =

∫ n

0

(1 + t)s ln (1 + t)(x− t)r dt

+

∫ n+n−n

n

(1 + t)s ln(1 + t)(x− t)rτn(t) dt

=

∫ n+1

1

us ln u(1 + x− u)r dt

+

∫ n+n−n

n

(1 + t)s ln(1 + t)(x− t)rτn(t) dt

= I1 + I2, (10)

where

I1 =
r

∑

i=0

(

r

i

)

(1 + x)i(−1)r−i

∫ n+1

1

ur+s−i ln u du

=

r
∑

i=0

(

r

i

)

(1 + x)i(−1)r−i
{(n+ 1)r+s−i+1 ln(n + 1)

r + s− i+ 1

−
(1 + n)r+s−i+1 − 1

(r + s− i+ 1)2

}

.

It follows that

N−lim
n→∞

I1 = N−lim
n→∞

r
∑

i=0

(

r

i

)

(1 + x)i(−1)r−i

r + s− i+ 1

×

r+s−i+1
∑

k=0

(

r + s− i+ 1

k

)

[

∞
∑

j=1

(−1)j+1nk−j

j
+ nk lnn

]

=
r

∑

i=0

r+s−i+1
∑

k=1

(

r

i

)(

r + s− i+ 1

k

)

(1 + x)i(−1)r+i+k+1

k(r + s− i+ 1)
. (11)

Next, since I2 = O(n−n), it follows that

lim
n→∞

I2 = 0. (12)

Equation (9) now follows from equations (10) to (12).

Corollary 2.6 The neutrix convolution (1− x)s ln(1 + x−)⊛ xr exists and

(1− x)s ln(1 + x−)⊛ xr =
r

∑

i=0

r+s−i+1
∑

k=1

(

r

i

)(

r + s− i+ 1

k

)

(1− x)i(−1)r+i+k+1

k(r + s− i+ 1)
,(13)

for r, s = 0, 1, 2, . . . .
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Proof. Equation (13) follows from equation (9) on replacing x by −x.

Corollary 2.7 The neutrix convolution (1 + x)s ln(1 + x+)⊛ xr
−
exists and

(1 + x)s ln(1 + x+)⊛ xr
−

=

r
∑

i=0

r+s−i+1
∑

k=1

(

r

i

)(

r + s− i+ 1

k

)

(1 + x)i(−1)i+j+1

k(r + s− i+ 1)

−
r

∑

i=0

(

r

i

)

(−1)i
{(1 + x)r+s+1 ln(1 + x+)

r + s− i+ 1

−
[H(x) + x+]

r+s+1 − [H(x) + x+]
i

(r + s− i+ 1)2

}

(14)

for r, s = 0, 1, 2, . . . .

Proof. Using equations (1) and (9), we have

(1 + x)s ln(1 + x+)⊛ xr = (1 + x)s ln(1 + x+)⊛ [xr
+ + (−1)rxr

−
]

=
r

∑

i=0

(

r

i

)

(−1)r−i
{(1 + x)r+s+1 ln(1 + x+)

r + s− i+ 1

−
[H(x) + x+]

r+s+1 − [H(x) + x+]
i

(r + s− i+ 1)2

}

+(−1)r(1 + x)s ln(1 + x+)⊛ xr
−

and equation (14) follows.

Corollary 2.8 The neutrix convolution (1− x)s ln(1 + x−)⊛ xr
+ exists and

(1− x)s ln(1 + x−)⊛ xr
+ =

r
∑

i=0

r+s−i+1
∑

k=1

(

r

i

)(

r + s− i+ 1

k

)

(1− x)i(−1)i+j

k(r + s− i+ 1)

−

r
∑

i=0

(

r

i

)

(−1)i
{(1− x)r+s+1 ln(1 + x−)

r + s− i+ 1

−
[H(−x) + x−]

r+s+1 − [H(−x) + x−]
i

(r + s− i+ 1)2

}

(15)

for r, s = 0, 1, 2, . . . .

Proof. Equation (15) follows from equation (14) on replacing x by −x.

Theorem 2.9 The neutrix convolution xs ln(1 + x+)⊛ xr exists and

xs ln(1 + x+)⊛ xr =
r

∑

i=0

s
∑

j=0

r+j−i+1
∑

k=1

(

r

i

)(

s

j

)(

r + k − i+ 1

k

)

(−1)s−j+r−i+k+1(1 + x)i

k(r + j − i+ 1)
,(16)

for r, s = 0, 1, 2, . . . .
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Proof. Putting [xs ln(1 + x+)]n = xs ln(1 + x+)τn(x) and u = 1 + t, we have

[xs ln(1 + x+)]n ⊛ xr =

∫ n

0

ts ln (1 + t)(x− t)r dt

+

∫ n+n−n

n

ts ln(1 + t)(x− t)rτn(t) dt

=

∫ n+1

1

(u− 1)s ln u(1 + x− u)r dt

+

∫ n+n−n

n

ts ln(1 + t)(x− t)rτn(t) dt

= J1 + J2, (17)

where

J1 =

r
∑

i=0

(

r

i

) s
∑

j=0

(

s

j

)

(−1)s−j+r−i(1 + x)i
∫

1+n

1

ur+j−i ln u du

=
r

∑

i=0

(

r

i

) s
∑

j=0

(

s

j

)

(−1)s−j+r−i(1 + x)i
[(1 + n)r+j−i+1 ln(1 + n)

r + j − i+ 1

−
(1 + n)r+j−i+1 − 1

(r + j − i+ 1)2

]

.

It follows that

N−lim
n→∞

J1 = N−lim
n→∞

r
∑

i=0

s
∑

j=0

(

r

i

)(

s

j

)

(1 + x)i(−1)s−j+r−i

r + j − i+ 1

×

r+j−i+1
∑

k=0

(

r + j − i+ 1

k

)

[

∞
∑

m=1

(−1)m+1nk−m

m
+ nk lnn

]

=
r

∑

i=0

s
∑

j=0

r+j−i+1
∑

k=1

(

r

i

)(

s

j

)(

r + k − i+ 1

k

)

(−1)s−j+r−i+k+1(1 + x)i

k(r + j − i+ 1)
. (18)

It follows as above that
lim
n→∞

J2 = 0 (19)

and equation (16) now follows from equations (17) to (19).

Corollary 2.10 The neutrix convolution xs ln(1 + x−)⊛ xr
−
exists and

xs ln(1 + x−)⊛ xr =

r
∑

i=0

s
∑

j=0

r+j−i+1
∑

k=1

(

r

i

)(

r + k − i+ 1

k

)

(1− x)i(−1)j−i+k+1

k(r + j − i+ 1)
,(20)

for r, s = 0, 1, 2, . . . .
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Proof. Equation (20) follows from equation (16) on replacing x by −x.

Corollary 2.11 The neutrix convolution xs ln(1 + x+)⊛ xr
−
exists and

xs ln(1 + x+)⊛ xr
−

=
r

∑

i=0

s
∑

j=0

r+j−i+1
∑

k=1

(

r

i

)(

s

j

)(

r + k − i+ 1

k

)

×
(−1)s−j−i+k+1(1 + x)i

k(r + j − i+ 1)

−

r
∑

i=0

(

r

i

) s
∑

j=0

(

s

j

)

(−1)s−j−i
[(1 + x)r+j+1 ln(1 + x+)

r + j − i+ 1

−
[H(x) + x+]

r+j+1 − [H(x) + x+]
i

(r + j − i+ 1)2

]

(21)

for r, s = 0, 1, 2, . . . .

Proof. Using equations (5) and (16), we have

xs ln(1 + x+)⊛ xr = xs ln(1 + x+)⊛ [xr
+ + (−1)rxr

−
]

=

r
∑

i=0

(

r

i

) s
∑

j=0

(

s

j

)

(−1)s−j+r−i
[(1 + x)r+j+1 ln(1 + x+)

r + j − i+ 1

−
[H(x) + x+]

r+j+1 − [H(x) + x+]
i

(r + j − i+ 1)2

]

+(−1)rxs ln(1 + x+)⊛ xr
−

and equation (21) follows.

Corollary 2.12 The neutrix convolution xs ln(1 + x−)⊛ xr
+ exists and

xs ln(1 + x−)⊛ xr
+ =

r
∑

i=0

s
∑

j=0

r+j−i+1
∑

k=1

(

r

i

)(

s

j

)(

r + k − i+ 1

k

)

×
(−1)j−i+k+1(1− x)i

k(r + j − i+ 1)

−
r

∑

i=0

(

r

i

) s
∑

j=0

(

s

j

)

(−1)j−i
[(1− x)r+j+1 ln(1 + x−)

r + j − i+ 1

−
[H(−x) + x−]

r+j+1 − [H(−x) + x−]
i

(r + j − i+ 1)2

]

, (22)

for r, s = 0, 1, 2, . . . .

Proof. Equation (22) follows from equation (21) on replacing x by −x.

For further results on the neutrix convolution, see [3] and [4].
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