The construction of Hom-Novikov superalgebras

Bing Sun

School of Mathematics and Statistics Northeast Normal University

Abstract

We study a twisted generalization of Novikov superalgebras, called Hom-Novikov superalgebras. It is shown that two classes of Hom-Novikov superalgebras can be constructed from Hom-supercommutative algebras together with derivations and Hom-Novikov superalgebras with Rota-Baxter operators, respectively.

Mathematics Subject Classification: 17A70, 17B60

Keywords: Hom-Novikov superalgebras, Rota-Baxter operators

1 Introduction

Novikov algebras were firstly introduced in the study of Hamiltonian operators concerning integrability of certain nonlinear partial differential equations.^[2] Yau in [3] introduced Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It turned out that Hom-Novikov algebras can be constructed from Novikov algebras, commutative Hom-associative algebras and Hom-Lie algebras along with some suitable linear maps. Later, Zhang, Hou and Bai in [4] defined a Hom-Novikov superalgebra as a twisted generalization of Novikov superalgebras.

The purpose of this paper is to consider the realization of Hom-Novikov superalgebras. It is shown that two classes of Hom-Novikov superalgebras can be constructed from Hom supercommutative algebras together with derivations and Hom-Novikov superalgebras with Rota-Baxter operators, respectively.

Throughout this paper \mathbf{F} denotes an arbitrary field.

2 Main Results

Let (A, \cdot) be an algebra over field **F**. A is said to be a superalgebra if the underlying vector space of A is \mathbb{Z}_2 -graded (i.e., $A = A_{\bar{0}} \oplus A_{\bar{1}}$, where $A_{\bar{0}}$ and $A_{\bar{1}}$

are vector subspaces of A) and $A_{\alpha} \cdot A_{\beta} \subset A_{\alpha+\beta}$, $\forall \alpha, \beta \in \mathbb{Z}_2$. An element $x \in A$ is called homogeneous if $x \in A_{\bar{0}} \cup A_{\bar{1}}$. In this work, all elements are supposed to be homogeneous unless otherwise stated. For a homogeneous element x we shall use the standard notation $|x| \in \mathbb{Z}_2 = \{\bar{0}, \bar{1}\}$ to indicate its degree.

Definition 2.1 ^[1] A Hom-associative superalgebra consists of a \mathbb{Z}_2 -graded vector space A, a linear self-map α and an even bilinear map $\mu : A \times A \to A$, satisfying

$$\alpha(xy) = \alpha(x)\alpha(y) \quad (multiplicativity)$$

and

$$(xy)\alpha(z) = \alpha(x)(yz)$$
 (Hom-associativity),

for $x, y, z \in A$.

Definition 2.2 ^[4] A Hom-Novikov superalgebra is a triple (A, μ, α) consisting of a \mathbb{Z}_2 -graded vector space A, an even bilinear map $\mu : A \times A \to A$ and an even linear map $\alpha : A \to A$ satisfying

$$\alpha(xy) = \alpha(x)\alpha(y) \,(multiplicativity),\tag{1}$$

$$(xy)\alpha(z) - \alpha(x)(yz) = (-1)^{|x||y|}((yx)\alpha(z) - \alpha(y)(xz)),$$
(2)

$$(xy)\alpha(z) = (-1)^{|y||z|}(xz)\alpha(y).$$
(3)

Definition 2.3 Let (A, μ, α) be a Hom-Novikov superalgebra, which is called involutive if α is an involution, i.e., $\alpha^2 = \text{id}$.

Proposition 2.4 If (A, μ, α) is an involutive Hom-Novikov superalgebra, then $(A, \alpha \circ \mu)$ is a Novikov superalgebra.

Proof. For convenience, we write $x * y = \alpha(xy)$, for all $x, y \in A$. Hence, it needs to show

$$(x * y) * z - x * (y * z) = (-1)^{|x||y|} ((y * x) * z - y * (x * z)),$$
(4)

$$(x*y)*z = (-1)^{|y||z|}(x*z)*y,$$
(5)

for all $x, y, z \in A$. Since (A, μ, α) is an involutive Hom-Novikov superalgebra, we have

$$\begin{aligned} (x*y)*z &= \alpha(\alpha(xy)z) = \alpha^2(xy)\alpha(z) \\ &= (xy)\alpha(z) = (-1)^{|y||z|}(xz)\alpha(y) = (-1)^{|y||z|}(x*z)*y. \end{aligned}$$

Furthermore,

$$\begin{aligned} &(x*y)*z - x*(y*z) = \alpha(\alpha(xy)z) - \alpha(x\alpha(yz)) = (xy)\alpha(z) - \alpha(x)(yz) \\ = & (-1)^{|x||y|}((yx)\alpha(z) - \alpha(y)(xz)) = (-1)^{|x||y|}((y*x)*z - y*(x*z)), \end{aligned}$$

which proves Equation (4) and the proposition.

The construction of Hom-Novikov superalgebras

Proposition 2.5 Let (A, μ, α) be a Hom-Novikov superalgebra. Then $(A, \alpha \circ \mu, \alpha^2)$ is a Hom-Novikov superalgebra.

Proof. For convenience, we write $x * y = \alpha(xy)$, for all $x, y \in A$. Hence, we need to prove

$$(x*y)*\alpha^{2}(z) - \alpha^{2}(x)*(y*z) = (-1)^{|x||y|}((y*x)*\alpha^{2}(z) - \alpha^{2}(y)*(x*z)), (6)$$
$$(x*y)*\alpha^{2}(z) = (-1)^{|y||z|}(x*z)*\alpha^{2}(y), (7)$$

for all $x, y, z \in A$. Since (A, μ, α) is a Hom-Novikov superalgebra, we have $(x*y)*\alpha^2(z) = \alpha^2((xy)\alpha(z)) = (-1)^{|y||z|}\alpha^2((xz)\alpha(y)) = (-1)^{|y||z|}(x*z)*\alpha^2(y).$

Furthermore,

$$\begin{aligned} &(x*y)*\alpha^2(z) - \alpha^2(x)*(y*z) = \alpha^2((xy)\alpha(z) - \alpha(x)(yz)) \\ &= (-1)^{|x||y|}\alpha^2((yx)\alpha(z) - \alpha(y)(xz)) = (-1)^{|x||y|}((y*x)*\alpha^2(z) - \alpha^2(y)*(x*z)), \end{aligned}$$

which proves Equation (6) and the proposition.

Theorem 2.6 Let (A, μ, α) be a Hom-supercommutative algebra and D: $A \to A$ be an even derivation such that $D\alpha = \alpha D$. Then $(A, *, \alpha)$ is a Hom-Novikov superalgebra, where * is defined by

$$x * y = \mu(x, D(y)) = xD(y), \tag{8}$$

Proof. The multiplicativity of α with respect to * in (8) follows from the multiplicativity of α with respect to μ and the hypothesis $D\alpha = \alpha D$. Next we check (2)

$$(x * y) * \alpha(z) - \alpha(x) * (y * z) = (xD(y))D(\alpha(z)) - \alpha(x)D(yD(z)) = (xD(y))\alpha(D(z)) - \alpha(x)(D(y)D(z)) - \alpha(x)(yD^{2}(z)) = -(xy)\alpha(D^{2}(z)).$$

The last two equalities follow from Hom-associativity. On the other hand,

$$\begin{aligned} &(-1)^{|x||y|}((y*x)*\alpha(z)-\alpha(y)*(x*z))\\ &= &(-1)^{|x||y|}((yD(x))D(\alpha(z))-\alpha(y)D(xD(z)))\\ &= &(-1)^{|x||y|}((yD(x))\alpha(D(z))-\alpha(y)(D(x)D(z))-\alpha(y)(xD^2(z)))\\ &= &(-1)^{|x||y|}(\alpha(y)(D(x)D(z))-\alpha(y)(D(x)D(z))-\alpha(y)(xD^2(z)))\\ &= &-(-1)^{|x||y|}\alpha(y)(xD^2(z)) = -(-1)^{|x||y|}(yx)\alpha(D^2(z)) = -(xy)\alpha(D^2(z)).\end{aligned}$$

Futhermore, we have

$$\begin{aligned} &(x*y)*\alpha(z)=(xD(y))\alpha(D(z))=\alpha(x)(D(y)D(z))\\ &=\ (-1)^{|y||z|}\alpha(x)(D(z)D(y)){=}(-1)^{|y||z|}(xD(z))\alpha(D(y)){=}(-1)^{|y||z|}(x*z)*\alpha(y). \end{aligned}$$

Consequently, we prove the theorem.

Definition 2.7 Let $(A, *, \alpha)$ be a Hom-superalgebra and let $\lambda \in \mathbf{F}$. If a linear map $P : A \to A$ satisfies

$$P(x) * P(y) = P(P(x) * y + x * P(y) + \lambda x * y), \ \forall x, y \in A,$$

then P is called a Rota-Baxter operator of weight λ and $(A, *, \alpha, P)$ is called a Rota-Baxter Hom-superalgebra of weight λ .

Theorem 2.8 Let $(A, *, \alpha, P)$ be a Rota-Baxter Hom-Novikov superalgebra of weight λ and P an even linear map. Assume that α and P commute. Then (A, \circ, α, P) is a Hom-Novikov superalgebra, where the multiplication \circ is defined as

$$x \circ y := P(x) * y + x * P(y) + \lambda x * y, \ \forall x, y \in A.$$

Proof. The multiplicativity of α with respect to \circ follows from the multiplicativity of α with respect to * and the hypothesis $P\alpha = \alpha P$. For any $x, y, z \in A$, we have,

$$\begin{split} & (x \circ y) \circ \alpha(z) - \alpha(x) \circ (y \circ z) \\ = & (P(x) * P(y)) * \alpha(z) + (P(x) * y) * \alpha(P(z)) + (x * P(y)) * \alpha(P(z)) \\ & +\lambda(x * y) * \alpha(P(z)) + \lambda(P(x) * y) * \alpha(z) + \lambda(x * P(y)) * \alpha(z) \\ & +\lambda^2(x * y) * \alpha(z) - \alpha(P(x)) * (P(y) * z) - \alpha(P(x)) * (y * P(z)) \\ & -\lambda\alpha(P(x)) * (y * z) - \alpha(x) * (P(y) * P(z)) - \lambda\alpha(x) * (P(y) * z) \\ & -\lambda\alpha(x) * (y * P(z)) - \lambda^2\alpha(x) * (y * z) \\ = & (P(x) * P(y)) * \alpha(z) - \alpha(P(x)) * (P(y) * z) + (P(x) * y) * \alpha(P(z)) \\ & -\alpha(P(x)) * (y * P(z)) + (x * P(y)) * \alpha(P(z)) - \alpha(x) * (P(y) * P(z)) \\ & +\lambda(x * y) * \alpha(P(z)) - \lambda\alpha(x) * (y * P(z)) + \lambda(P(x) * y) * \alpha(z) \\ & -\lambda\alpha(P(x)) * (y * z) + \lambda(x * P(y)) * \alpha(z) - \lambda\alpha(x) * (P(y) * z) \\ & +\lambda^2(x * y) * \alpha(z) - \lambda^2\alpha(x) * (y * z) \\ = & (-1)^{|x||y|} \Big((P(y) * P(x)) * \alpha(z) - \alpha(P(y)) * (P(x) * z) + (y * P(x)) * \alpha(P(z)) \\ & -\alpha(y) * (P(x) * P(z)) + (P(y) * x) * \alpha(P(z)) - \alpha(P(y)) * (x * P(z)) \\ & +\lambda(y * x) * \alpha(P(z)) - \lambda\alpha(y) * (x * P(z)) + \lambda(y * P(x)) * \alpha(z) - \lambda\alpha(y) * (P(x) * z) \\ & +\lambda(P(y) * x) * \alpha(z) - \lambda\alpha(P(y)) * (x * z) + \lambda^2(y * x) * \alpha(z) - \lambda^2\alpha(y) * (x * z) \Big)
\end{split}$$

Similarly, we have

$$(-1)^{|x||y|} \Big((y \circ x) \circ \alpha(z) - \alpha(y) \circ (x \circ z) \Big)$$

= $(-1)^{|x||y|} \Big((P(y) * P(x)) * \alpha(z) - \alpha(P(y)) * (P(x) * z) + (P(y) * x) * \alpha(P(z))$

The construction of Hom-Novikov superalgebras

$$\begin{aligned} &-\alpha(P(y))*(x*P(z))+(y*P(x))*\alpha(P(z))-\alpha(y)*(P(x)*P(z))\\ &+\lambda(y*x)*\alpha(P(z))-\lambda\alpha(y)*(x*P(z))+\lambda(P(y)*x)*\alpha(z)-\lambda\alpha(P(y))*(x*z)\\ &+\lambda(y*P(x))*\alpha(z)-\lambda\alpha(y)*(P(x)*z)+\lambda^2(y*x)*\alpha(z)-\lambda^2\alpha(y)*(x*z)\Big). \end{aligned}$$

Furthermore, on the one hand, we have

$$\begin{aligned} &(x \circ y) \circ \alpha(z) \\ &= P(P(x) * y + x * P(y) + \lambda x * y) * \alpha(z) + (P(x) * y + x * P(y)) * P(\alpha(z)) \\ &+ (\lambda x * y) * P(\alpha(z)) + \lambda(P(x) * y + x * P(y) + \lambda x * y) * \alpha(z) \\ &= (P(x) * P(y)) * \alpha(z) + (P(x) * y) * \alpha(P(z)) + (x * P(y)) * \alpha(P(z)) \\ &+ \lambda(x * y) * \alpha(P(z)) + \lambda(P(x) * y) * \alpha(z) + \lambda(x * P(y)) * \alpha(z) + \lambda^2(x * y) * \alpha(z) \\ &= (-1)^{|y||z|} \Big((P(x) * z) * \alpha(P(y)) + (P(x) * P(z)) * \alpha(y) + (x * P(z)) * \alpha(P(y)) \\ &+ \lambda(x * P(z)) * \alpha(y) + \lambda(P(x) * z) * \alpha(y) + \lambda(x * z) * \alpha(P(y)) + \lambda^2(x * z) * \alpha(y) \Big). \end{aligned}$$

On the other hand, we have

$$(-1)^{|y||z|} \Big((x \circ z) \circ \alpha(y) \Big)$$

$$= (-1)^{|y||z|} \Big((P(x) * P(z)) * \alpha(y) + (P(x) * z) * \alpha(P(y)) + (x * P(z)) * \alpha(P(y)) + \lambda(x * z) * \alpha(P(y)) + \lambda(P(x) * z) * \alpha(y) + \lambda(x * P(z)) * \alpha(y) + \lambda^2(x * z) * \alpha(y) \Big).$$

Hence, the conclusion holds.

ACKNOWLEDGEMENTS. The author would like to thank the referee for valuable comments and suggestions on this article.

References

- [1] Ammar, F.; Makhlouf, A., Hom-Lie superalgebras and Hom-Lie admissible superalgebras. J. Algebra, 324 (2010), 1513–1528..
- [2] Gel'fand, I.; Dorfman, I., Hamiltonian operators and algebraic structures related to them. Funktsional. Anal. i Priložen., 13 (1979), 13–30.
- [3] Yau, D., Hom-Novikov algebras. J. Phys. A: Math. Theor., 44 (2011), 085202, 20pp.
- [4] Zhang, R.; Hou, D.; Bai, C., A Hom-version of the affinizations of Balinskii-Novikov and Novikov superalgebras. J. Math. Phys., 52 (2011), 023505, 19 pp.

Received: August, 2016