The classifications of low-dimensional Hom-Lie triple systems

Juan Li

School of Mathematics and Statistics Northeast Normal University

Abstract

In this paper, we determined the two dimensional and three dimensional endomorphism of Lie triple systems on complex field using undetermined coefficients method, and then classified the Hom-Lie triple systems when the twisted map α is not equal to the identity map.

Mathematics Subject Classification: 17A40, 17B10, 17B56

Keywords: Hom-Lie triple system, classification

1 Introduction

A Hom-Lie algebra is a vector space endowed with a skew symmetric bracket satisfying a Jacobi identity twisted by a map. Before Hom-Lie algebras appeared, Hu studied q-Lie algebras, which are special Hom-Lie algebras[3]. Lie algebras are special cases of Hom-Lie algebras when the twisted map is the identity map. The notion of Hom-Lie algebras was introduced by Hartwig, Larsson and Silvestrov to describe the q-deformation of the Witt and the Virasoro algebras[2]. Since then, Hom-type algebras have been investigated by many authors. In particular, the notion of Hom-Lie triple systems was introduced by Yau[7].

We have known the classification of low-dimensional Lie triple systems. We can determine the low-dimensional endomorphism of Lie triple systems by using undetermined coefficients method. And then we can classify the two dimensional Hom-Lie triple systems and three dimensional Hom-Lie triple systems when the twisted map α is a multiplicative map.

2 Preliminary Notes

We start by recalling the definitions of Lie triple systems and Hom-Lie triple systems.

Definition 2.1 [4] A vector space T together with a trilinear map $(x, y, z) \mapsto$ [x, y, z] is called a Lie triple system (LTS for short) if

- (1) [x, x, z] = 0,
- (2) [x, y, z] + [y, z, x] + [z, x, y] = 0,
- (3) [u, v, [x, y, z]] = [[u, v, x], y, z] + [x, [u, v, y], z] + [x, y, [u, v, z]],

for all $x, y, z, u, v \in T$.

Definition 2.2 [7] A Hom-Lie triple system (Hom-LTS for short) $(T, [\cdot, \cdot, \cdot], \alpha = (\alpha_1, \alpha_2))$ consists of an **F**-vector space T, a trilinear map $[\cdot, \cdot, \cdot] : T \times T \times T \to T$, and linear maps $\alpha_i : T \to T$ for i = 1, 2, called twisted maps, such that for all $x, y, z, u, v \in T$,

(1)
$$[x, x, z] = 0$$
,

- (2) [x, y, z] + [y, z, x] + [z, x, y] = 0,
- (3) $[\alpha_1(u), \alpha_2(v), [x, y, z]] = [[u, v, x], \alpha_1(y), \alpha_2(z)] + [\alpha_1(x), [u, v, y], \alpha_2(z)] + [\alpha_1(x), \alpha_2(y), [u, v, z]].$

A Hom-Lie triple system is said to be multiplicative if $\alpha_1 = \alpha_2 = \alpha$ and $\alpha([x, y, z]) = [\alpha(x), \alpha(y), \alpha(z)]$, and denoted by $(T, [\cdot, \cdot, \cdot], \alpha)$.

A morphism $f : (T, [\cdot, \cdot, \cdot], \alpha = (\alpha_1, \alpha_2)) \to (T', [\cdot, \cdot, \cdot]', \alpha' = (\alpha'_1, \alpha'_2))$ of Hom-Lie triple systems is a linear map satisfying f([x, y, z]) = [f(x), f(y), f(z)]'and $f \circ \alpha_i = \alpha'_i \circ f$ for i = 1, 2. An isomorphism is a bijective morphism.

Remark 2.3 When the twisted maps α_i are both equal to the identity map, a Hom-Lie triple system is a Lie triple system. So Lie triple systems are special examples of Hom-Lie triple systems. More results about the Hom-Lie triple system are referred to [7].

Definition 2.4 [7] Let $(T, [\cdot, \cdot, \cdot], \alpha)$ be a Hom-Lie triple system, a subspace $D \subset T$ is called a Hom-subsystem if $\alpha(D) \subset D$ and $[D, D, D] \subset D$. A subspace $D \subset T$ is called a Hom-ideal if and $\alpha(D) \subset D$ and $[D, T, T] \subset D$.

Throughout this paper \mathbf{F} denotes an arbitrary field and Hom-Lie triple systems are multiplicative.

3 Main Results

Lemma 3.1 [1] $(T, [\cdot, \cdot, \cdot])$ is a 2-dimensional Lie triple system on complex field and $\{e_1, e_2\}$ is its basis. Then we can find the possibility of the following types

- (1) T is an Abelian Lie triple system,
- (2) $[e_1, e_2, e_1] = 0, [e_1, e_2, e_2] = e_1,$
- (3) $[e_1, e_2, e_1] = e_1, [e_1, e_2, e_2] = e_2.$

Theorem 3.2 $(T, [\cdot, \cdot, \cdot]_{\alpha}, \alpha)$ is a 2-dimensional Hom-Lie triple system on complex field and $\{e_1, e_2\}$ is its basis. Then we can find the possibility of the following types, when the twisted map α is not equal to the identity map,

(1) $(T, [\cdot, \cdot, \cdot]_{\alpha}, \alpha)$ is an Abelian Hom-Lie triple system,

- (2) $[\alpha(e_1), \alpha(e_2), \alpha(e_1)] = 0, \ [\alpha(e_1), \alpha(e_2), \alpha(e_2)] = \lambda_1 e_1, \ \lambda_1 \neq 0,$
- (3) $[\alpha(e_1), \alpha(e_2), \alpha(e_1)] = \lambda_1 e_1, \ [\alpha(e_1), \alpha(e_2), \alpha(e_2)] = -\frac{1}{\lambda_1} e_2, \ \lambda_1 \neq 0,$
- (4) $[\alpha(e_1), \alpha(e_2), \alpha(e_1)] = \lambda_2 e_2, \ [\alpha(e_1), \alpha(e_2), \alpha(e_2)] = -\frac{1}{\lambda_2} e_1, \ \lambda_2 \neq 0.$

Proof. We suppose that $\alpha(e_1) = \lambda_1 e_1 + \lambda_2 e_2$, $\alpha(e_2) = \beta_1 e_1 + \beta_2 e_2$, $A = \begin{pmatrix} \lambda_1 & \beta_1 \\ \lambda_2 & \beta_2 \end{pmatrix}$.

(1) $[\alpha(e_1), \alpha(e_2), \alpha(e_1)] = 0$, $[\alpha(e_1), \alpha(e_2), \alpha(e_2)] = 0$. Thus, $(T, [\cdot, \cdot, \cdot]_{\alpha}, \alpha)$ is an Abelian Hom-Lie triple system.

(2) We have

$$\begin{aligned} & [\alpha(e_1), \alpha(e_2), \alpha(e_1)] = 0 \\ &= [\lambda_1 e_1 + \lambda_2 e_2, \beta_1 e_1 + \beta_2 e_2, \lambda_1 e_1 + \lambda_2 e_2] \\ &= \lambda_1 \beta_2 \lambda_1 [e_1, e_2, e_1] + \lambda_1 \beta_2 \lambda_2 [e_1, e_2, e_2] + \lambda_2 \beta_1 \lambda_1 [e_2, e_1, e_1] + \lambda_2 \beta_1 \lambda_2 [e_2, e_1, e_2] \\ &= (\lambda_1 \beta_2 \lambda_2 - \lambda_2 \beta_1 \lambda_2) [e_1, e_2, e_2] \\ &= (\lambda_1 \beta_2 \lambda_2 - \lambda_2 \beta_1 \lambda_2) e_1. \end{aligned}$$

and

$$\begin{aligned} & [\alpha(e_1), \alpha(e_2), \alpha(e_2)] = \alpha(e_1) = \lambda_1 e_1 + \lambda_2 e_2 \\ & = (\lambda_1 \beta_2 \beta_2 - \lambda_2 \beta_1 \beta_2) [e_1, e_2, e_2] \\ & = (\lambda_1 \beta_2 \beta_2 - \lambda_2 \beta_1 \beta_2) e_1. \end{aligned}$$

So, we can obtain

$$\begin{cases} \lambda_2(\lambda_1\beta_2 - \lambda_2\beta_1) = 0\\ \beta_2(\lambda_1\beta_2 - \lambda_2\beta_1) = \lambda_1\\ \lambda_2 = 0. \end{cases}$$

That is

$$\begin{cases} \lambda_2 = 0\\ \lambda_1 \beta_2 \beta_2 = \lambda_1 \end{cases}$$

We can get two types

a. $\lambda_1 = 0$, then β_1 , β_2 can take all elements in T, $A = \begin{pmatrix} 0 & \beta_1 \\ 0 & \beta_2 \end{pmatrix}$. b. $\lambda_1 \neq 0$, then $\beta_2 = \pm 1$, β_1 can take all elements in T, $A = \begin{pmatrix} \lambda_1 & \beta_1 \\ 0 & \pm 1 \end{pmatrix}$. Thus, we obtain a type of the classification of 2-dimensional Hom-Lie triple systems $[\alpha(e_1), \alpha(e_2), \alpha(e_1)] = 0$, $[\alpha(e_1), \alpha(e_2), \alpha(e_2)] = \lambda_1 e_1$, $\lambda_1 \neq 0$.

(3) Using the same method which is used in (2). Thus, we obtain two types of the classification of 2-dimensional Hom-Lie triple systems

(i) $[\alpha(e_1), \alpha(e_2), \alpha(e_1)] = \lambda_1 e_1, \ [\alpha(e_1), \alpha(e_2), \alpha(e_2)] = -\frac{1}{\lambda_1} e_2, \ \lambda_1 \neq 0.$ (ii) $[\alpha(e_1), \alpha(e_2), \alpha(e_1)] = \lambda_2 e_2, \ [\alpha(e_1), \alpha(e_2), \alpha(e_2)] = -\frac{1}{\lambda_2} e_1, \ \lambda_2 \neq 0.$

Lemma 3.3 [1] $(T, [\cdot, \cdot, \cdot])$ is a 3-dimensional Lie triple system on complex field and $\{e_1, e_2, e_3\}$ is its basis. Then we can find the possibility of the following types

- (1) T is an Abelian Lie triple system,
- (2) T is a simple Lie triple system,
- $(3) [e_2, e_3, e_3] = e_2,$
- $(4) \ [e_1, e_2, e_1] = e_3,$
- (5) $[e_1, e_3, e_3] = e_1, [e_2, e_3, e_3] = e_1,$
- (6) $[e_1, e_2, e_1] = e_1, [e_1, e_2, e_2] = -e_2,$

the others are zero.

Theorem 3.4 $(T, [\cdot, \cdot, \cdot]_{\alpha}, \alpha)$ is a 3-dimensional Hom-Lie triple system on complex field and $\{e_1, e_2, e_3\}$ is its basis. Then we can find the possibility of the following types, when the twisted map α is not equal to the identity map,

- (1) $(T, [\cdot, \cdot, \cdot]_{\alpha}, \alpha)$ is an Abelian Hom-Lie triple system,
- (2) $(T, [\cdot, \cdot, \cdot]_{\alpha}, \alpha)$ is a simple Hom-Lie triple system,
- (3) $[\alpha(e_2), \alpha(e_3), \alpha(e_3)] = \beta_2 e_2, \ \beta_2 \neq 0,$
- (4) $[\alpha(e_1), \alpha(e_2), \alpha(e_3)] = \lambda_1^2 \beta_2 e_3, \ \lambda_1 \beta_2 \neq 0,$

554

The classifications of low-dimensional Hom-Lie triple systems

- (5) $[\alpha(e_1), \alpha(e_3), \alpha(e_3)] = (\beta_1 + \beta_2)e_1, \ [\alpha(e_2), \alpha(e_3), \alpha(e_3)] = (\beta_1 + \beta_2)e_1, \ \beta_1 + \beta_2 \neq 0,$
- (6) $[\alpha(e_1), \alpha(e_2), \alpha(e_1)] = \lambda_1 e_1, \ [\alpha(e_1), \alpha(e_2), \alpha(e_2)] = -\frac{1}{\lambda_1} e_2, \ \lambda_1 \neq 0,$
- (7) $[\alpha(e_1), \alpha(e_2), \alpha(e_1)] = \lambda_2 e_2, \ [\alpha(e_1), \alpha(e_2), \alpha(e_2)] = -\frac{1}{\lambda_2} e_1, \ \lambda_2 \neq 0,$

the others are zero.

Proof. We can obtain the results in the same way which is used in Theorem 2.2. \Box

ACKNOWLEDGEMENTS. The authors thank Professor Liangyun Chen for their helpful com- ments and suggestions. We also give our special thanks to referees for many helpful suggestions.

References

- [1] Bouetou, T., Classification of solvable 3-dimensional Lie triple systems, Non-associative algebra and its applications, (2003), 41-54.
- [2] Hartwig, J.; Larsson, D.; Silvestrov, S., Deformations of Lie algebras using σ -derivations, Deformations of Lie algebras using σ -derivations, 295 (2006), no. 2, 314-361.
- [3] Hu, N., Q-Witt algebras, q-Lie algebras, q-holomorph structure and representations, Algebra Coll, 6 (1999), 51-70.
- [4] Lister, W., A structure theory of Lie triple systems, Trans. Amer. Math. Soc., 72 (1952), 217-242.
- [5] Makhlouf, A.; Silvestrov, S., Hom-algebra structures, arXiv:math/ 0609501v3.
- [6] Xu, L.; Wang, C.; Zhang, R.; Zhang, Q., Classification of Low-Dimensional Hom-Leibniz Algebras, Journal of Jilin University (Science Edition), (1) 51 (2013), 74-82.
- [7] Yau, D., On *n*-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys., 62 (2012), 506-522.

Received: July, 2015